Synlett 2003(5): 0631-0634
DOI: 10.1055/s-2003-38358
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Catalytic Lewis Acid Activation of Thionyl Chloride: Application to the Synthesis of Aryl Sulfinyl Chlorides Catalyzed by Bismuth(III) Salts

Magali Peyronneaua, Nicolas Roquesb, Stéphane Mazières*a, Christophe Le Roux*a
a Hétérochimie Fondamentale et Appliquée (UMR CNRS 5069), Université Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
Fax: +33(5)61558204; e-Mail: leroux@chimie.ups-tlse.fr;
b Rhodia Organique Fine, Centre de Recherche de Lyon, 85 rue des Frères Perret, 69192 Saint-Fons Cedex, France
Further Information

Publication History

Received 10 January 2003
Publication Date:
28 March 2003 (online)

Abstract

The catalytic Lewis acid activation of thionyl chloride (1) has been achieved and applied to the preparation of aryl sulfinyl chlorides using BiCl3 (2), or Bi(OTf)3·xH2O (with 1 < x ≤ 4) (3) as catalysts. 3 is by far more efficient than 2 and the scope of this reaction is restricted to electron rich aromatics.

    References

  • 1 Oka K. Synthesis  1981,  661 
  • 2 Olah GA. Marinez ER. Prakash GKS. Synlett  1999,  1397 
  • 3a Olah GA. Nishimura J. J. Org. Chem.  1974,  39:  1203 
  • 3b Fujisawa T. Kakutani M. Kobayashi N. Bull. Soc. Chem. Jpn.  1973,  46:  3615 
  • 4a Schubart R. In Ullmann’s Encyclopedia of Industrial Chemistry   Vol. A25:  Gerhartz W. VCH; Weinheim: 1985.  p.461-476  ; and references cited
  • 4b Schwan AL. Strickler RR. Org. Prep. Proced. Int.  1999,  31:  579 
  • 5a Douglass IB. Norton RV. J. Org. Chem.  1968,  33:  2104 
  • 5b Kee ML. Douglass IB. Org. Prep. Proced.  1970,  2:  235 
  • 6 Douglass IB. Farah BS. Thomas EG. J. Org. Chem.  1961,  26:  1996 
  • 7a Bell KH. Aust. J. Chem.  1985,  38:  1209 
  • 7b Bell KH. McCaffery LF. Aust. J. Chem.  1992,  45:  1213 
  • 8a Karade NN. Kate SS. Adude RN. Synlett  2001,  1573 
  • 8b

    Moreover it is reported in this publication that the reaction of trimethoxybenzene proceeds efficiently while the reaction of 1 and trimethoxybenzene has previously been reported to give only by-products at room temperature. [7a]

  • 8c

    In our hands using Montmorillonite K10 purchased from Aldrich Chemical Co. and used as received, the reaction between 1 and anisole led to unchanged reactants following the procedure reported. [8a]

  • 9a Labrouillère M. Le Roux C. Gaspard-Iloughmane H. Dubac J. Synlett  1994,  723 
  • 9b Labrouillère M. Le Roux C. Gaspard-Iloughmane H. Dubac J. Bull. Soc. Chim. Fr.  1995,  132:  522 
  • 10 For a review about Friedel-Crafts and related reactions catalyzed by 2 or 3 see: Le Roux C. Dubac J. Synlett  2002,  181 
  • 11a Desmurs JR. Labrouillère M. Dubac J. Laporterie A. Gaspard H. Metz F. Ind. Chem. Libr.  1996,  8 
  • 11b The Roots of Organic Development   Desmurs J.-R. Ratton S. Elsevier; Amsterdam: 1996.  p.15-28  
  • 11c Desmurs JR. Labrouillère M. Le Roux C. Gaspard H. Laporterie A. Dubac J. Tetrahedron Lett.  1997,  38:  8871 
  • 11d Répichet S. Le Roux C. Dubac J. Desmurs JR. Eur. J. Org. Chem.  1998,  2743 
  • 12 Répichet S. Le Roux C. Hernandez P. Dubac J. Desmurs JR. J. Org. Chem.  1999,  64:  6479 
  • 13 Suzuki H. Matano Y. Organobismuth Chemistry   Elsevier; Amsterdam: 2001.  Chap. 1. p.1-20  
  • 14a Répichet S. Zwick A. Vendier L. Le Roux C. Dubac J. Tetrahedron Lett.  2002,  43:  993 
  • 14b Another method of preparation of 3 has been previously reported: Labrouillère M. LeRoux C. Gaspard H. Laporterie A. Dubac J. Desmurs JR. Tetrahedron Lett.  1999,  40:  285 
  • 15 Kobayashi S. Komoto I. Tetrahedron  2000,  56:  6463 
  • 16 Douglass IB. Koop DA. J. Org. Chem.  1964,  29:  951 
  • 18a

    The mass of a known amount of 3 remained unchanged after stirring for 5 h at -5 °C with 1 in excess and evaporation to dryness at the same temperature under high vacuum. Moreover, this recovered 3 showed the same 19F NMR signals than the ones reported for 3. [14] Finally, no fluorine was detected by 19F NMR in the recovered 1.

  • 18b

    When a 10:2:0.4 molar mixture of 1, 4 and 3 was stirred at -5 °C for 2 h, the 1H NMR signals of 4 remained unchanged.

  • 19a Yadav JS. Subba Reddy BV. Srinivasa Rao R. Praveen Kumar S. Nagaiah K. Synlett  2002,  784 
  • 19b

    Unfortunately in our hands, using scandium triflate purchased from Aldrich Chemical Co., used as received and following the procedure reported, [19a] 1 failed to react with some selected aromatic compounds (anisole, veratrole, biphenyl, fluorobenzene, benzene, chlorobenzene).

17

From our experience the stability of aryl sulfinyl chlorides seems highly unpredictable.

20

General procedure. CAUTION: Aromatic sulfinyl chlorides are thermolabile compounds and have been reported to explode during distillation. [4a] [5a] Thus, distillation was not attempted in our experiments and all the yields reported have been determined by 1H NMR (250 MHz) after addition of a known amount of dibromomethane. To a 50 mL flask equipped with a septum inlet and magnetic stirring bar was added 160 mg (507 µmol) of bismuth(III) chloride. The flask was connected to an argon line and 18 mL (247 mmol) of freshly distilled thionyl chloride were added by syringe. To this suspension was added 2.74 g (25.3 mmol) of anisole. The flask was equipped with a condenser, connected to an oil bubbler and the reaction mixture was heated in an oil bath at 60 °C for 1 h. During this time the color of the solution became red-orange and HCl evolved from the solution. The flask was cooled in an ice bath and the excess of thionyl chloride was removed in vacuum (0.1 mm Hg) yielding to an orange liquid. In order to remove the catalyst, 50 mL of pentane were added, the organic phase was collected and evaporated under reduced pressure to give a yellow liquid, which was characterized as 4-methoxybenzenesulfinyl chloride(4). 1H NMR (CDCl3): δ 3.84 (s, 3 H, OMe), 7.03 (d, 2 H, H3,5, J = 8.9 Hz), 7.79 (d, 2 H, H2,6, J = 8.9 Hz); 13C NMR (CDCl3): δ 55.9 (OMe), 114.9, 126.1 (CH phenyl), 139.9 (C-OMe), 164.1 (C-SO phenyl); IR (neat): 2976, 1587, 1488, 1310, 1260, 1146, 1078, 1021, 831 cm-1. The formation of 4 was proved after characterization of its corresponding sulfinamide (N,N-diisopropyl-4-methoxybenzenesulfinamide was isolated after flash chromatography over silica gel G60, eluant: ethyl acetate) as previously reported. [7a] Mp = 57-58 °C; 1H NMR (CDCl3): δ 1.09 (d, 6 H, CHMe2, J = 6.7 Hz), 1.38 (d, 6 H, CHMe2, J = 6.7 Hz), 3.58 (spt, 2 H, CHMe2, J = 6.7 Hz), 3.83 (s, 3 H, Me), 6.98 (m, 2 H, H3,5), 7.53 (d, 2 H, H2,6); 13C NMR (CDCl3): δ 23.7, 23.8 (CHMe2), 46.7 (CHMe2), 55.4 (OMe), 114.0, 128.1 (CH phenyl), 135.7 (C-OMe), 161.2 (C-SO phenyl); IR(neat): 2966, 1461, 1376, 1245, 1180, 1087, 831 cm-1; MS (EI): m/z (%) = 255 (8) [M+], 240 (8), 155 (100), 58 (18), 43 (17).
4-Methoxy-2-methylbenzenesulfinyl chloride: 1H NMR (CDCl3): δ 2.27 (s, 3 H, C-Me), 3.56 (s, 3 H, OMe), 6.53 (d, 1 H, H3, J = 2.3 Hz), 6.69 (dd, 1 H, H5, J = 2.3 Hz and 8.8 Hz), 7.78 (d, 1 H, H6, J = 8.8 Hz); 13C NMR (CDCl3): δ 18.1 (C-Me), 55.9 (OMe), 113.0, 117.0, 126.0 (CH phenyl), 138.2, 138.6 (C-Me and C-OMe phenyl), 164.4 (C-SO phenyl); IR (neat): 2940, 1590, 1568, 1480, 1456, 1323, 1291, 1249, 1148, 1058, 851, 814 cm-1.
N,N -diisopropyl-4-methoxy-2-methylbenzenesulfin-amide: 1H NMR (CDCl3): δ 1.05 (d, 6 H, CHMe2, J = 6.7 Hz), 1.38 (d, 6 H, CHMe2, J = 6.7 Hz), 2.31 (s, 3 H, C-Me), 3.56 (spt, 2 H, CHMe2, J = 6.7 Hz), 3.80 (s, 3 H, OMe), 6.67 (d, 1 H, H3, J = 2.4 Hz), 6.87 (dd, 1 H, H5, J = 2.4 Hz and 8.5 Hz), 7.92 (d, 1 H, H6, J = 8.5 Hz); 13C NMR (CDCl3): δ 19.1 (C-Me), 23.5, 23.9 (CHMe2), 47.1 (CHMe2), 55.3 (OMe), 111.0, 116.7, 128.7 (CH phenyl), 132.6, 137.1 (C-Me and C-OMe phenyl), 161.3 (C-SO phenyl); IR (neat): 2970, 1597, 1481, 1240, 1069, 1055, 940, 861 cm-1; MS (EI): m/z (%) = 269 (16) [M+], 169 (100), 141 (19), 108 (48), 58(35), 43 (51).
4-Methoxy-3-methylbenzenesulfinyl chloride: 1H NMR (CDCl3): δ 2.06 (s, 3 H, C-Me), 3.58 (s, 3 H, OMe), 6.72 (d, 1 H, H5, J = 8.5 Hz), 7.5 (m, 1 H, H2), 7.54 (dd, 1 H, H6, J = 2.4 Hz and 8.5 Hz); 13C NMR (CDCl3): δ 18.7 (C-Me), 56.1 (OMe), 110.5, 124.3, 126.2 (CH phenyl), 128.8, 139.6 (C-Me and C-OMe phenyl), 162.6 (C-SO phenyl); IR (neat): 2974, 1588, 1492, 1458, 1317, 1255, 1135, 1080, 1024, 808 cm-1.
N,N -diisopropyl-4-methoxy-3-methylbenzenesulfin-amide: 1H NMR (CDCl3): δ 1.00 (d, 6 H, CHMe2, J = 6.7 Hz), 1.28 (d, 6 H, CHMe2, J = 6.7 Hz), 2.13 (s, 3 H, Me), 3.44 (spt, 2 H, CHMe2, J = 6.7 Hz), 3.74 (s, 3 H, CH3), 6.78 (d, 1 H, H5, J = 8.5 Hz), 7.26 (m, 1 H, H2), 7.30 (dd, 1 H, H6, J = 2.4 Hz and 8.5 Hz); 13C NMR (CDCl3): δ 16.3 (C-Me), 23.7, 23.8 (CHMe2), 46.2 (CHMe2), 55.4 (OMe), 109.6, 125.6 (CH phenyl), 127.1 (C-Me or C-OMe phenyl), 128.4 (CH phenyl), 134.8 (C-Me or C-OMe phenyl), 159.3 (C-SO phenyl); IR(neat): 2967, 1594, 1488, 1458, 1365, 1252, 1182, 1123, 1067, 944 cm-1; MS (EI): m/z (%) = 269(10) [M+], 254 (6), 169 (100), 58 (13), 43 (13).
3,4-Dimethoxybenzenesulfinyl chloride: 1H NMR (CDCl3): δ 3.97 (s, 3 H, OMe), 3.98 (s, 3 H, OMe), 7.00 (d, 1 H, H3, J = 8.9 Hz), 7.42 (m, 2 H, H2,5); 13C NMR (CDCl3): δ 56.0 and 56.1 (OMe), 105.5, 110.7, 117.9 (CH phenyl), 139.7, 149.8 (C-Me and C-OMe phenyl), 153.8 (C-SO phenyl); IR(neat): 2954, 1574, 1503, 1461, 1261, 1231, 1133, 1077, 1015 cm-1.
N,N -diisopropyl-3,4-dimethoxybenzenesulfinamide: 1H NMR (CDCl3): δ 0.93 (d, 6 H, CHMe2, J = 6.7 Hz), 1.20 (d, 6 H, CHMe2, J = 6.7 Hz), 3.38 (spt, 2 H, CHMe2, J = 6.7 Hz), 3.72 (s, 3 H, OMe), 3.73 (s, 3 H, OMe), 6.77 (d, 2 H, H3, J = 8.8 Hz), 6.94-7.10 (m, 2 H, H2-6); 13C NMR (CDCl3): δ 23.6, 23.8 (CHMe2), 46.2 (CHMe2), 55.9 (OMe), 109.1, 110.7, 119.3 (CH phenyl), 136.0, 149.0 (C-Me and C-OMe phenyl), 150.4 (C-SO phenyl); IR (neat): 2964, 1588, 1504, 1268, 1254, 1229, 1182, 1088 cm-1; MS (EI): m/z (%) = 285 (9) [M+], 185 (100), 58 (8), 43(11).
4-Ethoxybenzenesulfinyl chloride: 1H NMR (CDCl3): δ 1.39 (t, 3 H, Me, J = 7.5 Hz), 4.07 (q, 2 H, CH2, J = 7.5 Hz), 6.98 (m, 2 H, H3,5), 7.74 (d, 2 H, H2,6); 13C NMR (CDCl3): δ 14.7 (CH2-Me), 64.3 (CH2-Me), 109.9 (C-Me phenyl), 115.3, 126.1 (CH phenyl), 139.7 (C-OEt phenyl), 163.5 (C-SO phenyl); IR(neat): 2975, 1587, 1489, 1310, 1261, 1142, 1077, 1039, 832 cm-1.
N,N -diisopropyl-4-ethoxybenzenesulfinamide: 1H NMR (CDCl3): δ 0.97 (d, 6 H, CHMe2, J = 6.7 Hz), 1.25 (d, 6 H, CHMe2, J = 6.7 Hz), 1.28 (t, 3 H, Me, J = 7.0 Hz), 3.41 (spt, 2 H, CHMe2, J = 6.7 Hz), 3.91 (q, 2 H, CH2, J = 7.0 Hz), 6.82 (d, 2 H, H3,5), 7.39 (d, 2 H, H2,6); 13C NMR (CDCl3): δ 14.7 (CH2-Me), 23.7, 23.8 (CHMe2), 46.2 (CHMe2), 63.6 (CH2-Me), 114.4, 128.0 (CH phenyl), 135.3 (C-OEt phenyl), 160.6 (C-SO phenyl); MS (EI): m/z (%) = 269 (9) [M+], 254 (6), 169 (89), 141 (51), 86 (72), 84 (100); IR (neat): 2964, 1590, 1487, 1472, 1385, 1364, 1303, 1246, 1179, 1113, 1082, 1061, 949, 836 cm-1.
2,4,6-trimethylbenzenesulfinyl chloride: 1H NMR (CDCl3): δ 2.34 (s, 3 H, 4-Me), 2.63 (s, 6 H, 2,6-Me), 6.93 (s, 2 H, H3,5); 13C NMR (CDCl3): δ 18.7 (2,6-Me), 21.5 (4-Me), 131.2, 138.0 (CH phenyl), 141.0 (C-Me), 144.6 (C-SO phenyl); IR(neat): 2919, 1598, 1454, 1379, 1292, 1151, 1052, 852 cm-1.
N,N -diisopropyl-2,4,6-trimethylbenzenesulfinamide: 1H NMR (CDCl3): δ 1.04 (d, 6 H, CHMe2, J = 6.7 Hz), 1.42 (d, 6 H, CHMe2, J = 6.7 Hz), 2.19 (s, 3 H, 4-Me), 2.46 (s, 6 H, 2,6-Me), 6.75 (br s, 2 H, H3,5); 13C NMR (CDCl3): δ 20.5 (C2,6-Me), 21.0 (C4-Me), 23.7, 24.4 (CHMe2), 48.9 (CHMe2), 131.3 (CH phenyl), 134.8, 138.3, 139.9 (C2,4,6-Me and C-SO phenyl); MS (EI): m/z (%) = 267 (60) [M+], 167 (66), 139 (100), 106 (94), 58 (80), 43 (97); IR (nujol): 2868, 1598, 1460, 1366, 1172, 1120, 1085, 935, 848 cm-1.