Am J Perinatol 2003; 20(2): 097-108
DOI: 10.1055/s-2003-38315
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4693

Role of Antioxidant Nutrients and Lipid Peroxidation in Premature Infants with Respiratory Distress Syndrome and Bronchopulmonary Dysplasia

Horacio S. Falciglia1 , J. Robert Johnson2 , JoAnn Sullivan3 , Charles F. Hall2 , Jeffery D. Miller2 , George C. Riechmann2 , Grace A. Falciglia4
  • 1Department of Pediatrics, Division of Neonatology and Pulmonary Biology, Children's Hospital, Cincinnati, Ohio
  • 2Department of Medical Research, Good Samaritan Hospital, Cincinnati, Ohio
  • 3Department of Nursing, Good Samaritan Hospital, Cincinnati, Ohio
  • 4Department of Nutrition, College of Allied Health Sciences, University of Cincinnati, Ohio
Further Information

Publication History

Publication Date:
27 March 2003 (online)

ABSTRACT

The objective of this study was to determine if newborn premature infants with severe respiratory distress syndrome (RDS) who developed bronchopulmonary dysplasia (BPD) demonstrate, within the first 3 days of life, lower blood levels of antioxidants and higher urine levels of lipid peroxidation products than premature infants who recovered from RDS. Perinatal variables (gestational age, birth weight, and Apgar scores) and antioxidant indices in cord and in third day of life plasma and red blood cell (RBC) samples from healthy premature infants (n = 35), infants with RDS (n = 23) and infants with BPD (n = 23) were examined. Antioxidant indices included selenium, alpha-tocopherol, total and oxidized glutathione, glutathione peroxidase, superoxide dismutase, and urinary malondialdehyde. By inferential statistics, only the perinatal variables and cord plasma selenium distinguished healthy premature infants from premature infants with RDS or BPD. From perinatal variables and antioxidant indices we calculated: (1) cord to third-day-of-life variable differences, (2) variable-to-variable ratios, and (3) ratios of a difference for one variable to a difference for any second variable. Subset regression analysis yielded an equation (adjusted R

@affil2:2 = 0.8839) that correctly predicted infants who developed BPD 100% of the time. Predictor variables for BPD were gestational age, Apgar at 1 min, cord and third-day-of-life RBC selenium, cord total glutathione, cord and third-day-of-life glutathione peroxidase and nine different ratios involving Apgar scores, RBC selenium, total and oxidized glutathione, alpha-tocopherol, glutathione peroxidase, and superoxide dismutase. In this study, there was no relationship between lipid peroxidation and BPD. There was a higher rate of patent ductus arteriosus, congestive heart failure, and retinopathy of prematurity in infants with BPD. This study confirms that low plasma selenium and alpha-tocopherol levels in premature infants (≤ 30 weeks' gestational age or lower) were significantly associated with an increased respiratory morbidity.

REFERENCES

  • 1 Edwards D K, Dyer W M, Northway Jr H W. Twelve years experience with bronchopulmonary dysplasia.  Pediatrics . 1977;  59 839-846
  • 2 Pusey V A, MacPherson R I, Chernick V. Pulmonary fibroplasia following prolonged artificial ventilation of newborn infants.  Can Med Assoc J . 1969;  100 451-457
  • 3 Watts J L, Ariagno R L, Brady J P. Chronic pulmonary disease in neonates after artificial ventilation: distribution of ventilation and pulmonary interstitial emphysema.  Pediatrics . 1977;  60 273-281
  • 4 Frank L, Sosenko I R. Undernutrition as a major contributing factor in the pathogenesis of bronchopulmonary dysplasia.  Am Rev Respir Dis . 1988;  138 725-729
  • 5 Brown E R, Stark A, Sosenko I R, Lawson E E, Avery M E. Bronchopulmonary dysplasia: possible relationships to pulmonary edema.  J Pediatr . 1978;  92 982-984
  • 6 Shenai J P, Chytil F, Stahlman M T. Vitamin A status of neonates with bronchopulmonary dysplasia.  Pediatr Res . 1985;  19 185-189
  • 7 Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D G, Hoekstra W G. Selenium: biochemical role as a component of glutathione peroxidase.  Science . 1973;  179 588-590
  • 8 Cruz M L, Bhadra S, Subbiah M T, Tsang R C. Serum lipid peroxidation potential in infants.  Arch Pediatr Adolesc Med . 1994;  148 1212-1215
  • 9 Falciglia H S, Ginn-Pease M E, Falciglia G A, Lubin A H, Frank D J, Chang W. Vitamin E and selenium levels of premature infants with severe respiratory distress syndrome and bronchopulmonary dysplasia.  J Pediatr Perinat Nutr . 1988;  2 35-49
  • 10 Ballard J L, Khory J C, Wedig K, Wang L, Eilers-Walsman B L, Lipp R. New Ballard Score, expanded to include extremely premature infants.  J Pediatr . 1991;  119 417-423
  • 11 Amin S, Chen S Y, Collip P J, Castro-Magana M, Maddaiah V T, Klein S W. Selenium in premature infants.  Nutr Metab . 1980;  24 331-340
  • 12 Mino M, Kitagawa M, Nakagawa S. Red blood cell tocopherol concentrations in a normal population of Japanese children and premature infants in relation to the assessment of vitamin E status.  Am J Clin Nutr . 1985;  41 631-638
  • 13 Anderson M E. Determination of glutathione and glutathione disulfide in biological samples.  Methods Enzymol . 1985;  113 548-555
  • 14 Yoshioka T, Sugiue A, Shimada T, Utsumi K Superoxide dismutase activity in the maternal and cord blood. Biol Neonate .  1979;  36 173-180
  • 15 Flohe L, Gunzler W A. Assays of glutathione peroxidase.  Methods Enzymol . 1984;  105 114-121
  • 16 Total Hemoglobin, Quantitative, Colorimetric Determination In Whole Blood at 530-550 nm Sigma Diagnostics Procedure No. 525, pp. 1-6. St. Louis: Sigma Diagnostics. 1984
  • 17 Draper H H, Polensek L, Hadley M, McGirr L G. Urinary malondialdehyde as an indicator of lipid peroxidation in the diet and in the tissues.  Lipids . 1984;  19 836-843
  • 18 Marshall D D, Kotelchuck M, Young T E, Bose C L, Kruyer L, O'Shea T M. Risk factors for chronic lung disease in the surfactant era: a North Carolina population-based study of very low birth weight infants. North Carolina Neonatologist Association.  Pediatrics . 1999;  104 1345-1350
  • 19 Committee of Dietary Allowances, Food and Nutrition Board Recommended dietary allowances. Washington, D.C.: National Academy of Sciences 1980
  • 20 Combs G F, Noguchi T, Scott L M. Mechanisms of action of selenium and vitamin E in protection of biological membranes.  Fed Proc . 1975;  34 2090-2095
  • 21 Tappel A L. Vitamin E and free radical peroxidation of lipids.  Ann NY Acad Sci . 1980;  355 12-44
  • 22 Stadtman T C. Selenium-dependent enzymes.  Ann Rev Biochem . 1980;  49 93-110
  • 23 Ganther H E, Hafeman D G, Lawrence R A, Serfuss R E, Hoekstra W G. Selenium and glutathione peroxidase in health and disease. A review In: Prasad AS, ed. Trace Elements in Human Health and Disease Vol. 2. New York: Academic Press 1976: 165-233
  • 24 Groh J L, Gropper S S. Advanced Nutrition and Human Metabolism, Third Edition (2000) Wadsworth Publishers, Belmont, California. 
  • 25 Huston R K, Benda G I, Carlson C V, Shearer T R, Reynolds J W, Neerhout R C. Selenium and vitamin E sufficiency in premature infants requiring total parenteral nutrition.  J Pharm Nutr . 1982;  6 507-510
  • 26 Darlow B A, Inder T E, Graham P J, Sluis K B, Malpas T J, Taylor B J. et al . The relationship of selenium status to respiratory outcome in the very low birth weight infant.  Pediatrics . 1995;  96 314-319
  • 27 Frank L, Sosenko I R. Undernutition as a major contributing factor in the pathogenesis of bronchopulmonary dysplasia.  Am Rev Respir Dis . 1988;  138 725-729
  • 28 Widdowson E M, Chan H, Harrison G E, Milner R DG. Accumulation of cu, zn, mn, cr and co in the human liver before birth.  Biol Neonate . 1972;  20 360
  • 29 Meehan M A, Falciglia H S, Falciglia G A, Specker B L. Dietary intake of antioxidants during pregnancy and their relationship to bronchopulmonary dysplasia.  Pediatric Res . 1992;  31 1882
  • 30 Darlow B A, Winterbourne C C, Inder T E, Graham P J, Harding J E, Weston P J. et al . The effect of selenium supplementation on outcome in very low birth weight infants: a randomized controlled trial. The New Zealand Neonatal Study Group.  J Pediatr . 2000;  136 473-480
  • 31 Gutcher G R, Raynor W J, Farrell P M. An evaluation of vitamin status in premature infants.  Am J Clin Nutr . 1984;  40 1078-1089
  • 32 Desai I D, Martinez F E, Dos Santos E J, Dutra de Oliveria E J. Transient lipoprotein deficiency at birth: a cause of low levels of vitamin E in the newborn.  Acta Vitaminol Enzymol . 1984;  6 71-76
  • 33 Fischer W C, Whanger P D. Effects of selenium deficiency on vitamin E metabolism in rats.  J Nutr Sci Vitaminol . 1977;  23 273-280
  • 34 Hill K E, Burk R F. Influence of vitamin E and selenium on GSH dependant protection against microsomal lipid peroxidation.  Hepatology . 1982;  2 678
  • 35 Ehrenkranz R A, Bonta B W, Ablow R C, Warshaw J B. Amelioration of bronchopulmonary dysplasia after vitamin E administration.  N Engl J Med . 1978;  299 564-569
  • 36 Ehrenbranz R A, Ablow R C, Warsaw J B. Effect of vitamin E on the development of oxygen induced lung injury in neonates.  Ann NY Acad Sci . 1982;  393 452-465
  • 37 Watts J L, Milner R, Zipursky B, Paes B, Ling E, Gill G, Fletcher B. et al . Failure of supplementation with vitamin E to prevent bronchopulmonary dysplasia in infants <1,500 g birth weight.  Eur Respir J . 1991;  4 188-190
  • 38 Berger T M, Frei B, Frei N, Avery M E, Suh J, Yoder B A, Coalson J J. Early high dose antioxidant vitamins do not prevent bronchopulmonary dysplasia in premature baboons exposed to prolonged hyperoxia: a pilot study.  Pediatr Res . 1998;  43 719-726
    >