Synlett 2003(3): 0365-0368
DOI: 10.1055/s-2003-37105
LETTER
© Georg Thieme Verlag Stuttgart · New York

Enantiopure Guanidine Bases For Enantioselective Enone Epoxidations: 1, Acyclic Guanidines

Julie C. McManusa, John S. Careyb, Richard J. K. Taylor*a
a Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
Fax: +44(1904)434523; e-Mail: rjkt1@york.ac.uk;
b GlaxoSmithKline Pharmaceuticals, Leigh, Tonbridge, Kent TN11 9AN, UK
Further Information

Publication History

Received 20 December 2002
Publication Date:
07 February 2003 (online)

Abstract

A range of structurally and functionally varied enantiopure guanidines has been prepared and evaluated in the enantioselective epoxidation of 3-tert-butoxycarbonylamino-4,4-dimethoxycyclohexa-2,5-dien-1-one 1 using tert-butylhydroperoxide. Successful enantioselective epoxidations were observed and useful structure-activity data obtained, but the reactions were slow and the maximum ee observed was 30%.

    References

  • For reviews on epoxy ketones as versatile building blocks see:
  • 1a Lauret C. Tetrahedron: Asymmetry  2001,  12:  2359 
  • 1b Bonini C. Righi G. Tetrahedron  2002,  58:  4981 
  • 2 For a review see: Porter MJ. Skidmore J. Chem. Commun.  2000,  1215 
  • 3a Gautier ECL. Lewis NJ. McKillop A. Taylor RJK. Tetrahedron Lett.  1994,  35:  8759 
  • 3b McKillop A. McLaren L. Taylor RJK. Watson RJ. Lewis N. J. Chem. Soc., Perkin Trans. 1  1996,  1385 
  • 3c Graham AE. McKerrecher D. Davies DH. Taylor RJK. Tetrahedron Lett.  1996,  37:  7445 
  • 3d Graham AE. Taylor RJK. J. Chem. Soc., Perkin Trans. 1  1997,  1087 
  • 3e Ragot JP. Steeneck C. Alcaraz M.-L. Taylor RJK. J. Chem. Soc., Perkin Trans. 1  1999,  1073 
  • 3f Runcie KA. Taylor RJK. Org. Lett.  2001,  3:  3237 
  • 4a Alcaraz L. Macdonald G. Ragot J. Lewis NJ. Taylor RJK. Tetrahedron  1999,  55:  3707 
  • 4b Alcaraz L. Macdonald G. Ragot J. Lewis NJ. Taylor RJK. J. Org. Chem.  1998,  63:  3526 
  • 4c Taylor RJK. Alcaraz L. Kapfer-Eyer I. Macdonald G. Wei X. Lewis NJ. Synthesis  1997,  775 ; and references therein
  • 5 Macdonald G. Alcaraz L. Lewis NJ. Taylor RJK. Tetrahedron Lett.  1998,  39:  5433 
  • 6 Dwyer CL. Gill CD. Ichihara O. Taylor RJK. Synlett  2000,  704 
  • 7a Genski T. Macdonald G. Wei X. Lewis N. Taylor RJK. Synlett  1999,  795 
  • 7b Genski T. Macdonald G. Wei X. Lewis N. Taylor RJK. Arkivoc  2000,  1:  266 
  • For recent reviews see:
  • 8a Ishikawa T. Isobe T. Chem. Eur. J.  2002,  8:  553 
  • 8b Schmidtchen FP. Berger M. Chem. Rev.  1997,  97:  1609 ; and references therein
  • For recent publications in the area of enantiopure guanidines see: Michael Additions:
  • 9a Ishikawa T. Araki Y. Kumamoto T. Seki H. Fukuda K. Isobe T. Chem. Commun.  2001,  245 ; and references therein
  • 9b Howard-Jones A. Murphy PJ. Thomas DA. Caulkett PWR. J. Org. Chem.  1999,  64:  1039 
  • 9c Ma K. Cheng K. Tetrahedron: Asymmetry  1999,  10:  713 
  • 10a Strecker Synthesis: Corey EJ. Grogan MJ. Org. Lett.  1999,  1:  157 
  • 10b Henry Reaction: Chinchilla R. Nájera C. Sánchez-Agulló P. Tetrahedron: Asymmetry  1994,  5:  1393 
  • 11 Yamamoto Y. Kojima S. In The Chemistry of Amidines and Imidates   Vol. 2:  Patai S. Rappoport Z. Wiley; New York: 1991. 
  • 12a Kim KS. Qian L. Tetrahedron Lett.  1993,  34:  7677 
  • 12b Levallet C. Lerpiniere J. Ko SY. Tetrahedron  1997,  53:  5291 
  • 14a Baker TJ. Tomioka M. Goodman M. Org. Synth.  2000,  78:  91 
  • 14b Zapf CW. Creighton CJ. Tomioka M. Goodman M. Org. Lett.  2001,  3:  1133 ; and references therein
  • Preparation of 8d·HCl salt:
  • 15a

    (S)-1-Methoxy-2-propyl-amine (2.59 g, 29.1 mmol) was added to a solution of N,N-di-Boc-N′′-trifluoromethanesulfonylguanidine 6 (7.59 g, 19.4 mmol) and diisopropyl(ethyl)amine (5.1 cm3, 29.3 mmol) in CH2Cl2, under argon. The reaction was at r.t. for 2 h before the solvent was removed under reduced pressure and the residue was purified by flash silica chromatography (CH2Cl2) to give N,N-di-Boc-N′′-[(1S)-2-methoxy-1-methylethyl]guanidine 7d (6.12 g, 95%) as a white solid, mp 79-80 °C; [α]D 20 -6.5 (c 1.0, CHCl3) which was fully characterised.

  • 15b

    The Boc-protected guanidine 7d (6.05 g, 18.2 mmol) was dissolved in approx. 3 M anhyd methanolic HCl (100 cm3) and was stirred at 40 °C, under argon, for 18 h. The solvent was then removed under reduced pressure to afford N′′-[(1S)-2-methoxy-1-methylethyl]guanidine hydrochloride (8d·HCl) quantitatively (3.03 g) as a hygroscopic gum, [α]D 20 -24.3 (c 1.00, MeOH). IR (neat): νmax: 3253 and 3147 (NH), 2981 and 2934 (CH), 1640 (CN3) cm-1. 1H NMR (400 MHz, CD3OD): δ = 3.84-3.79 (1 H, m, CH), 3.47 (1 H, dd, J = 9.5 and 4.0, CHAHBOMe), 3.40 (3 H, s, OCH3), 3.37 (1 H, dd, J = 9.5 and 6.5, CHAHBOMe), 1.23 (3 H, d, J = 6.5, CH3). 13C NMR (100 MHz, CD3OD): δC = 158.3 (CN3), 76.9 (CH), 59.4 (OCH3), 48.5 (CH2), 17.4 (CH3). MS (CI): m/z = 132(100) [MH+]; HRMS (CI): Calcd for C5H14N3O: 132.1137. Found: [MH+]: 132.1132 (2.7 ppm error).

  • 16 The C2-symmetric pyrrolidines were prepared according to: Yamamoto Y. Hoshino J. Fujimoto Y. Ohmoto J. Sawada S. Synthesis  1993,  298 
  • 17 Guo Z.-X. Cammidge AN. Horwell DC. Synth. Commun.  2000,  30:  2933 ; and references therein
13

All new compounds were fully characterised by 1H NMR, 13C NMR and IR spectroscopies plus HRMS or elemental analysis.

18

Chiral HPLC was carried out using a Chiralcel OJ column (25 cm × 4.6 mm) with hexane-isopropanol (98:2) as eluent at a flow rate of 1 mL/min and detection at 276 nm.