SYNLETT
Spotlight 51

This feature focuses on a reagent chosen by a postgraduate, highlighting the uses and preparation of the reagent in current research

Cerium(III) Chloride Heptahydrate: CeCl$_3$$\cdot$7H$_2$O

Compiled by Ravula Satheesh Babu

Ravula Satheesh Babu was born on 22nd March 1971 at Warangal (India). He studied his Bachelor of Science at Kakatiya University, his Bachelor of Education Andhra University, and Master of Science at the Department of Chemistry, University of Pune. He has submitted his PhD thesis on 'Stereoselective Total Synthesis of Artemisinin and Development of Novel Synthetic Methodologies' under the guidance of Prof. J. S. Yadav, FNA at IICT, Hyderabad. Presently he is working as 'Postdoctoral Research Associate' at West Virginia University with Prof. George A. O’Doherty.

460 Clark Hall, Department of Chemistry, West Virginia University,
Morgantown, WV-26506, USA
Fax +1(304)42934909; E-mail: satheeshbabur@hotmail.com

Introduction

Few areas of synthetic chemistry have witnessed a growth as explosive as that brought about by the application of lanthanide reagents to organic synthesis. Cerium(III) chloride heptahydrate1 is a commercially available lanthanide reagent which is water tolerant, non-toxic, easy to handle, inexpensive and can be used without further purification.

Abstracts

A) Luche2 introduced this reagent in 1978 for the selective 1,2 reduction of enones. Since the preparation of organocerium compounds by Imamoto and co-workers3 in early 1980’s these are now widely applied as the reagent of choice to facilitate nucleophilic addition reactions. Recently, Bartoli and co-workers4 demonstrated the reactivity of CeCl$_3$$\cdot$7H$_2$O in combination with NaI for several organic transformations.

B) Cerium(III) chloride was shown to catalyze the Michael addition5 of 1,3 dicarbonyl compounds to α,β-unsaturated ketones and α,β-unsaturated aldehydes in the presence of NaI. The catalyst system can be easily separated from the reaction mixture and it can be reused without an appreciable loss of activity. The reactions can also be performed without solvents under microwave irradiation.8

C) Cerium(III) chloride is a novel reagent for the nonaqueous selective conversion of dioxolane to carbonyl compounds.9 Similarly, CeCl$_3$$\cdot$7H$_2$O–NaI in acetonitrile has been recently reported for the selective deprotection of the tert-butyl esters in the presence of N-Boc protecting group.10
D) Highly regioselective ring opening of epoxides and aziridines has been carried out using cerium(III) chloride to synthesize the corresponding chlorohydrins, iodohydrins, 1,2-azidoalcohols, 1,2-azidoamines, and 1,2-aminoalcohols. A simple and efficient method for the conversion of alcohols into alkyl iodides using CeCl₃ has been reported.

E) Cerium(III) chloride has been used as a mild Lewis acid, and efficient catalyst for the deprotection of alcohol protecting groups such as MEM, Tr, TBDMS, allyl, prenyl, Me and PMB. Highly regioselective ring opening of epoxides and aziridines has been carried out using cerium(III) chloride to synthesize the corresponding chlorohydrins, iodohydrins, 1,2-azidoalcohols, 1,2-azidoamines, 1,2-aminoalcohols, chloroamines, iodoamines and PMB. Organocerium reagents are generated in situ by transmetalation reactions from organolithium or organomagnesium reagents. Organocerium reagents are highly oxophilic and significantly less basic than their RLi and RMgBr counterparts.

F) α,α'-Dibromo ketones react with 1,3-dienes in the presence of CeCl₃–SnCl₂, providing [3+4] cycloadducts via the oxyallyl cation intermediate.

G) Organocerium reagents are generated in situ by transmetalation reactions from organolithium or organomagnesium reagents. Organocerium reagents are highly oxophilic and significantly less basic than their RLi and RMgBr counterparts.

References