This Spotlight reviews several applications of N-cumyl-substituted functional groups in organic synthesis since the preliminary results of 1999. Directed metalation groups (DMGs) are sometimes compromised by the inability to convert them to different functionalities under mild conditions in post-directed ortho metation (DoM) steps. The advent of N-cumyl modified carboxamide, sulfonamide and O-carbamate DMGs, whose primary advantages over analogous N-t-Bu and other N-alkyl systems rest in fast and/or mild hydrolysis post-DoM, has opened new possibilities for the manipulation of substituted aromatics (Scheme 1). Starting materials are easily prepared by treating the appropriate benzoyl or sulfonyl chlorides with cumyl amine for access to benzamides and sulfonamides, respectively, or by treating phenyl chloroformate with a secondary N-alkyl-N-cumyl amine for access to benzoamides and sulfonamides, respectively, or by treating phenyl chloroformate with a secondary N-alkyl-N-cumyl amine for O-carbamates.

Directed metalation groups (DMGs) are sometimes compromised by the inability to convert them to different functionalities under mild conditions in post-directed ortho metation (DoM) steps. The advent of N-cumyl modified carboxamide, sulfonamide and O-carbamate DMGs, whose primary advantages over analogous N-t-Bu and other N-alkyl systems rest in fast and/or mild hydrolysis post-DoM, has opened new possibilities for the manipulation of substituted aromatics (Scheme 1). Starting materials are easily prepared by treating the appropriate benzoyl or sulfonyl chlorides with cumyl amine for access to benzamides and sulfonamides, respectively, or by treating phenyl chloroformate with a secondary N-alkyl-N-cumyl amine for O-carbamates.

Abstracts

ortho-Substituted N-cumylbenzamides and aryl O-carbamates may be easily decumylated under a number of conditions. Treatment of secondary N-cumylbenzamides with a Lewis acid (BF₃·OEt₂/CH₂Cl₂/r.t.) gives primary amides in good yields, while application of Charette’s conditions (Tf₂O/pyridine/CH₂Cl₂/−40 °C) affords benzonitriles in one pot. Similarly, O-carbamates undergo rapid decumylation (TFA/r.t./6–10 min) to yield benzoxazines or secondary carbamates; the latter may be easily hydrolyzed to phenols (10% NaOH/EtOH/r.t.).
Metatallation of N-cumyl phthalimidine (2.2 equiv s-BuLi/TMEDA/THF, 78 °C) followed by electrophile quench gives, after oxidation (PDC/DMF/r.t.) access to 3-substituted phthalimides that can be decumylated (TFA/50 °C, 9–16 h) in high yield. The method has been extended to TMS-protected sulfans derived from N-cumylbenzenesulfonamide, to afford 7-substituted saccharins after simple desilylation (K2CO3/MeOH), oxidation (PDC/DMF/r.t.) and decumylation (CF3CH2OH/reflux/90 min). Alternatively, decumylation of 7-substituted TMS-protected sulfans (CF3CH2OH/reflux) provide direct access to 7-substituted benzisothiazole-1,1-dioxides.

Weinreb has shown that N-cumyl-N-(α-methoxy)benzylbenzamides may be used to generate N-acylimines (BF3·OEt2/CH2Cl2/reflux) which can be trapped with allytrimethylsilane, with concomitant loss of the N-cumyl group, to afford N-homoallylic secondary benzamides. Clayden has used N-cumyl-N-benzylbenzamides to induce de-aromatizing cyclization reactions, initiated by benzylic anion formation (2 equiv t-BuLi/12 equiv HMPPA/THF/40 °C), to provide enone products after acidic workup. The use of cumyl as the N-protecting group in such systems was a key aspect to the successful synthesis of (±)-kainic acid, since the corresponding t-Bu3 analogue failed to dealkylate under identical conditions (TFA/reflux/6 h).

Enantioselective applications are also possible. N-Cumyl-N-ethylferrocenecarboxamide stericly mimics N,N-diisopropylferrocenecarboxamide in (−)-sparteine-mediated metallation to provide 2-substituted ferrocenes in good yield. Unlike the original N,N-diisopropyl system, the products are open to flexible manipulation by virtue of decumylation under very mild conditions (CF3CH2OH/reflux/5–12 h) to give, usually quantitatively, enantomically enriched secondary ferrocenecarboxamides for further transformations. For example, N-allylation of N-ethyl-2-vinylferrocenecarboxamide followed by olefin metathesis with Grubbs’ catalyst gives, after hydrogenation, a planar chiral ferroencyle azepinone. Subsequent metatallation and electrophile quench (Ph3P=Cl) affords structurally novel phosphine ligands.

References

(3) More forcing conditions are required to dealkylate N-t-Bu benzamides; see: Reitz, D. B.; Massey, S. M. J. Org. Chem. 1996, 61, 1375.
(4) (a) Cumyl amine can be prepared from cumyl alcohol by a modification of the procedure of: Balderman, D.; Kalir, A. Synthesis 1978, 24. The azide is reduced with LiAlH4 (Et2O/0 °C → r.t. → reflux) or H2 (Lindlar’s catalyst/EtOH) instead of Raney nickel. (b) Cumyl amine is also commercially available from TCI America: catalogue no. CI1298.
(7) Ang, P. J. A.; Metallinos, C.; Snieckus, V., unpublished results.
(14) Metallinos, C.; Szilit, H.; Taylor, N. J.; Snieckus, V., manuscript in preparation.

Synlett 2002, No. 9, 1556–1557 ISSN 0936-5214 © Thieme Stuttgart · New York