Directed metalation groups (DMGs) are sometimes compromised by the inability to convert them to different functionalities under mild conditions in post-directed ortho metalation (DoM) steps. The advent of N-cumyl modified carboxamide, sulfonamide and O-carbamate DMGs, whose primary advantages over analogous N-t-Bu and other N-alkyl systems rest in fast and/or mild hydrolysis post-DoM, has opened new possibilities for the manipulation of substituted aromatics (Scheme 1). Starting materials are easily prepared by treating the appropriate benzoyl or sulfonyl chlorides with cumyl amine for access to benzamides and sulfonamides, respectively, or by treating phenyl chloroformate with a secondary N-alkyl-N-cumyl amine for access to benzamides and sulfonamides, respectively, or by treating phenyl chloroformate with a secondary N-alkyl-N-cumyl amine for O-carbamates.

Abstracts

ortho-Substituted N-cumylbenzamides and aryl O-carbamates

may be easily decumylated under a number of conditions. Treatment of secondary N-cumylbenzamides with a Lewis acid (BF₃·OEt₂/CH₂Cl₂/r.t.) gives primary amides in good yields, while application of Charette’s conditions (Tf₂O/pyridine/CH₂Cl₂/–40 °C) affords benzonitriles in one pot. Similarly, O-carbamates undergo rapid decumylation (TFA/r.t./6–10 min) to yield benzoxazines or secondary carbamates; the latter may be easily hydrolyzed to phenols (10% NaOH/EtOH/r.t.).
Metalation of N-cumyl phthalimidine (2 equiv s-BuLi/TMEDA/THF/–78 °C) followed by electrophile quench gives, after oxidation (PDC/DMF/r.t.) access to 3-substituted phthalimides that can be decumylated (TFA/50 °C/9–16 h) in high yield. The method has been extended to TMS-protected sultams derived from N-cumylbenzenesulfonamide, to afford 7-substituted saccharins after simple desilylation (K₂CO₃/MeOH), oxidation (PDC/DMF/r.t.) and decumylation (CF₃CH₂OH/reflux/90 min). Alternatively, decumylation of 7-substituted TMS-protected sultams (CF₃CH₂OH/reflux) provide direct access to 7-substituted benzisothiazole-1,1-dioxides.

Weinreb has shown that N-cumyl-N-(α-methoxy)benzylbenzamides may be used to generate N-acylimines (BF₃·OEt₂/CH₂Cl₂/r.t./18–21 h) which can be trapped with allytrimethylsilane, with concomitant loss of the N-cumyl group, to afford N-homoallylic secondary benzamides.

Clayden has used N-cumyl-N-benzylbenzamides to induce de-aromatizing cyclization reactions, initiated by benzylic anion formation (2 equiv r-BuLi/12 equiv HMPA/THF/–40 °C), to provide enone products after acidic workup. The use of cumyl as the N-protecting group in such systems was a key aspect to the successful synthesis of (±)-kainic acid, since the corresponding r-Bu₁ analogue failed to dealkylate under identical conditions (TFA/reflux/6 h).

Enantioselective applications are also possible. N-Cumyl-N-ethylferrocencarboxamide stERICALLY mimics N,N-diisopropylferrocencarboxamide in (–)-sparteine-mediated metalation to provide 2-substituted ferrocenes in good yield. Unlike the original N,N-diisopropyl systems, the products are open to flexible manipulation by virtue of decumylation under very mild conditions (CF₃CH₂OH/reflux/5–12 h) to give, usually quantitatively, enantiomerically enriched secondary ferrocencarboxamides for further transformations.

For example, N-allylation of N-ethyl-2-vinylferrocencarboxamide followed by olefin metathesis with Grubbs stimulus catalyst gives, after hydrogenation, a planar chiral ferrocenyl azeidine. Subsequent metalation and electrophile quench (Ph₃P=CH₂) affords structurally novel phosphine ligands.

References

(4) (a) Cumyl amine can be prepared from cumyl alcohol by a modification of the procedure of: Balderman, D.; Kalir, A. *Synthesis* 1978, 24. The azide is reduced with LiAlH₄ (Et₂O/0 °C → r.t. → reflux) or H₂ (Lindlar’s catalyst/EtOH) instead of Raney nickel. (b) Cumyl amine is also commercially available from TCI America: catalogue no. C1292.
(6) Charette, A. B.; Chu, P. *Synlett* 1998, 163.
(8) (a) Cumyl amine can be prepared from cumyl alcohol by a modification of the procedure of: Balderman, D.; Kalir, A. *Synthesis* 1978, 24. The azide is reduced with LiAlH₄ (Et₂O/0 °C → r.t. → reflux) or H₂ (Lindlar’s catalyst/EtOH) instead of Raney nickel. (b) Cumyl amine is also commercially available from TCI America: catalogue no. C1292.
(9) (a) Cumyl amine can be prepared from cumyl alcohol by a modification of the procedure of: Balderman, D.; Kalir, A. *Synthesis* 1978, 24. The azide is reduced with LiAlH₄ (Et₂O/0 °C → r.t. → reflux) or H₂ (Lindlar’s catalyst/EtOH) instead of Raney nickel. (b) Cumyl amine is also commercially available from TCI America: catalogue no. C1292.