Synthesis 2002(9): 1163-1170
DOI: 10.1055/s-2002-32527
PAPER
© Georg Thieme Verlag Stuttgart · New York

Syntheses of Phenothiazinylboronic Acid Derivatives - Suitable Starting Points for the Construction of Redox Active Materials

Christa S. Krämer, Thomas J. Zimmermann, Markus Sailer, Thomas J. J. Müller*
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377 München, Germany
Fax: +49(6221)544205; e-Mail: Thomas_J.J.Mueller@urz.uni-heidelberg.de;
Further Information

Publication History

Received 6 March 2002
Publication Date:
28 June 2002 (online)

Abstract

Phenothiazinylboronic acid derivatives 3,7 and 9, useful building blocks for the construction of oligophenothiazines, are readily synthesized in good yield from brominated phenothiazines 5 and 6 by bromine-lithium exchange followed by trapping with trialkylborate (route A) or by palladium-catalyzed borylation with tetramethyl dioxoborolane (8) (route B). The novel class of tetrakis(phenothiazinylphenyl)methanes 11, showing remarkably large Stokes shifts and a reversible low oxidation potential, can be prepared in good yield by Suzuki coupling of tetrakis(p-bromophenyl)methane (10) with 3a.

    References

  • 2 Sainsbury M. In Comprehensive Heterocyclic Chemistry   Vol. 3:  Katritzky AR. Rees CW. Pergamon; Oxford: 1984.  p.995 
  • 3a Mietzsch F. Angew. Chem.  1954,  66:  363 
  • 3b Ionescu M. Mantsch H. Adv. Heterocycl. Chem.  1967,  8:  83 
  • 3c Bodea C. Silberg I. Adv. Heterocycl. Chem.  1968,  9:  321 
  • 3d Valzelli L. Garattini S. In Principles of Psychopharmacology   Clark WG. Academic Press; 1970: 255. 
  • 3e Okafor CO. Heterocycles  1977,  7:  391 
  • 3f Eckstein Z. Urbanski T. Adv. Heterocycl. Chem.  1978,  23:  1 
  • 3g Szabo J. Chem. Heterocycl. Compd. USSR (Engl. Trans.)  1979,  15:  291 
  • 3h Albery WJ. Foulds AW. Hall KJ. Hillman AR. Edgell RG. Orchard AF. Nature  1979,  282:  793 
  • 4a Nishiwaki E. Nakagawa H. Takasaki M. Matsumoto T. Sakurai H. Shibuya M. Heterocycles  1990,  31:  1763 
  • 4b Decuyper J. Piette J. Lopez M. Merville MP. Vorst A. Biochem. Pharmacol.  1984,  33:  4025 
  • 4c Motten AG. Buettner GR. Chignell CF. Photochem. Photobiol.  1985,  42:  9 
  • 4d Fujita H. Matsuo I. Chem. Biol. Interac.  1988,  66:  27 
  • 5a Forrest I. Forrest F. Biochim. Biophys. Acta  1958,  29:  441 
  • 5b Iida Y. Bull. Chem. Soc. Jpn.  1971,  44:  663 
  • 5c Moutet J.-C. Reverdy G. Nouv. J. Chim.  1983,  7:  105 
  • For UV/Vis and EPR spectra of 10-methylphenothiazine, see e.g.:
  • 6a Shine HJ. Mach EE. J. Org. Chem.  1965,  30:  2130 
  • 6b Shine HJ. Thompson DR. Veneziani C. J. Heterocycl. Chem.  1967,  4:  517 
  • 6c For cyclovoltammetric and spectroscopic data of phenothiazine, see e.g.: Tinker LA. Bard AJ. J. Am. Chem. Soc.  1979,  101:  2316 
  • 6d Padusek B. Kalinowski MK. Electrochim. Acta  1983,  28:  639 
  • 6e McIntyre R. Gerischer H. Ber. Bunsen Ges. Phys. Chem.  1984,  88:  963 
  • 7a Duesing R. Tapolsky G. Meyer TJ. J. Am. Chem. Soc.  1990,  112:  5378 
  • 7b Jones WE. Chen P. Meyer TJ. J. Am. Chem. Soc.  1992,  114:  387 
  • 7c Brun AM. Harriman A. Heitz V. Sauvage J.-P. J. Am. Chem. Soc.  1991,  113:  8657 
  • 7d Burrows HD. Kemp TJ. Welburn MJ. J. Chem. Soc., Perkin Trans. 2  1973,  969 
  • 7e Collin J.-P. Guillerez S. Sauvage J.-P. J. Chem. Soc., Chem. Commun.  1989,  776 
  • 7f Daub J. Engl R. Kurzawa J. Miller SE. Schneider S. Stockmann A. Wasielewski MR. J. Phys. Chem. A  2001,  105:  5655 
  • 8a Wheland RC. Gillson JL. J. Am. Chem. Soc.  1976,  98:  3916 
  • 8b Berges P. Kudnig J. Klar G. Sanchez-Martinez E. Diaz-Calleja R. Synth. Met.  1992,  46:  207 
  • 8c Knorr A. Daub J. Angew. Chem., Int. Ed. Engl.  1995,  34:  2664 
  • 8d Spreitzer H. Scholz M. Gescheidt G. Daub J. Liebigs Ann. Chem.  1996,  2069 
  • 8e Spreitzer H. Daub J. Chem.-Eur. J.  1996,  2:  1150 
  • 9a For applications of AFM and STM in chemistry, see e.g.: Various authors Chem. Rev.  1997,  97: Issue 4
  • 9b For applications in molecular electronics, see e.g.: Rabe JP. In An Introduction to Molecular Electronics   Petty MC. Bryce MR. Bloor D. Oxford University Press; New York: 1995.  p.261-278  
  • 9c

    For nanoscale materials see e.g.: Various authors Acc. Chem. Res. 1999, 32, Issue 5.

  • For conductance of single molecules under STM conditions, see e.g.:
  • 10a Bumm LA. Arnold JJ. Cygan MT. Dunbar TD. Burgin TP. Jones LII. Allara DL. Tour JM. Weiss PS. Science  1996,  271:  1705 
  • 10b Davis WB. Svec WA. Ratner MA. Wasielewski MR. Nature  1998,  396:  60 
  • 10c Cygan MT. Dunbar TD. Arnold JJ. Bumm LA. Shedlock NF. Burgin TP. Jones LII. Allara DL. Tour JM. Weiss PS. J. Am. Chem. Soc.  1998,  120:  2721 
  • 10d Leatherman G. Durantini EN. Gust D. Moore TA. Moore AL. Stone S. Zhou Z. Rez P. Liu YZ. Lindsay SM. J. Phys. Chem. B  1999,  103:  4006 
  • 11a Müller TJJ. Tetrahedron Lett.  1999,  40:  6563 
  • 11b Krämer CS. Zeitler K. Müller TJJ. Org. Lett.  2000,  2:  3723 
  • 12 Krämer CS. Zeitler K. Müller TJJ. Tetrahedron Lett.  2001,  42:  8619 
  • 13a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 13b Suzuki A. In Metal Catalyzed Cross Coupling Reactions   Stang PJ. Diederich F. Wiley-VCH; Weinheim: 1998.  p.49-97  
  • 13c Stanforth SP. Tetrahedron  1998,  54:  263 
  • 13d Suzuki A. J. Organomet. Chem.  1999,  576:  147 
  • 14 Compounds 5 were prepared in good yields by KOBu-t mediated N-alkylation of 3-bromo-10H-phenothiazine that can be synthesized in excellent yield and multigram quantities (75 g) according to: Cymerman-Craig J. Rogers WP. Warwick GP. Aust. J. Chem.  1955,  8:  252 
  • 15 Bodea C. Terdic M. Acad. Rep. Pop. Rom.  1962,  13:  81 ; Chem. Abstr. 1963, 59, 11477
  • 16 Brandsma L. In Houben-Weyl, Methoden der Organischen Chemie   Vol. E19d:  Hanack M. Georg Thieme Verlag; Stuttgart: 1993.  p.406-413  
  • 17 Köster R. In Houben-Weyl, Methoden der Organischen Chemie   Vol. 13/3a:  Köster R. Georg Thieme Verlag; Stuttgart: 1982.  p.634-647  
  • 18a Ebdrup S. J. Chem. Soc., Perkin Trans. 1  1998,  1147 
  • 18b Ebdrup S. Synthesis  1998,  1107 
  • 19 Coudret C. Synth. Comm.  1996,  29:  3543 
  • 20a Kalinowski H.-O. Berger S. Braun S. 13 C NMR Spektroskopie   Georg Thieme Verlag; Stuttgart: 1984.  p.232 
  • 20b Kalinowski H.-O. Berger S. 13 C NMR Spektroskopie   Georg Thieme Verlag; Stuttgart: 1984.  p.569 
  • 21a Murata M. Watanabe S. Masuda Y. J. Org. Chem.  1997,  62:  6458 
  • 21b Murata M. Oyama T. Watanabe S. Masuda Y. J. Org. Chem.  2000,  65:  164 
  • 22a Zimmermann TJ. Freundel O. Gompper R. Müller TJJ. Eur. J. Org. Chem.  2000,  3305 
  • 22b Zimmermann TJ. Müller TJJ. Z. Naturforscher  2001,  56b:  1349 
  • 22c

    Zimmermann, T. J.; Müller, T. J. J. Eur. J. Org. Chem. 2002, submitted.

  • 22d

    Zimmermann, T. J.; Müller, T. J. J. Synthesis 2002, submitted.

  • 23 For an excellent consideration of electron transfer from and to molecules with multiple, noninteracting redox centers, see e.g.: Flanagan JB. Margel S. Bard AJ. Anson FC. J. Am. Chem. Soc.  1978,  100:  4248 
  • 24 Organikum   14 th ed.:  VEB Deutscher Verlag der Wissenschaften; Berlin: 1993. 
  • 25a Wilson LM. Griffin AC. J. Mater. Chem.  1993,  3:  991 
  • 25b Hoskins BF. Robson R. J. Am. Chem. Soc.  1990,  112:  1546 
  • 26 Zanello P. In Ferrocenes   Togni A. Hayashi T. VCH; Weinheim: 1995.  p.317 
1

New Address: Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.