Synlett 2002(5): 0781-0783
DOI: 10.1055/s-2002-25365
LETTER
© Georg Thieme Verlag Stuttgart · New York

Nucleophilic Napththalene Dearomatization of N-Alkyl-N-benzyl(dinaphthyl)phosphinamides. Application to the Synthesis of γ-(N-Alkylamino)(dihydronaphthalenyl)phosphinic Acids

Gloria Ruiz Gómez, Fernando López Ortiz*
Área de Química Orgánica, Universidad de Almería, Carretera de Sacramento, 04120, Almería. Spain
Fax: +34(950)215481; e-Mail: flortiz@ual.es;
Further Information

Publication History

Received 19 December 2001
Publication Date:
07 February 2007 (online)

Abstract

Lithiation of N-alkyl-N-benzyl(dinaphthyl)phosphinamides with s-BuLi at -90 ºC in THF promoted the dearomatization of one naphthalene ring through anionic cyclization. The intermediate lithium compounds were trapped with MeOH, MeI and allyl bromide affording benzo[e]-1-phosphaisoindoles with excellent stereoselectivities. Acid hydrolysis of the P-N linkage allowed to obtain γ-(N-alkylamino)phosphinic acids containing a dihydronaphthalene system. This structural fragment proved to be an element of conformational restriction.

    References

  • 1a Robichaud AJ. Meyers AI. J. Org. Chem.  1991,  56:  2607 
  • 1b Hulme AN. Henry SS. Meyers AI. J. Org. Chem.  1995,  60:  1265 
  • 2a Ahmed A. Bragg RA. Clayden J. Tchabanenko K. Tetrahedron Lett.  2001,  42:  3407 
  • 2b Bragg RA. Clayden J. Bladon M. Ichihara O. Tetrahedron Lett.  2001,  42:  3411 
  • For some recent references see:
  • 3a James B. Meyers AI. Tetrahedron Lett.  1998,  39:  5301 
  • 3b Shindo M. Koga K. Tomioka K. J. Org. Chem.  1998,  63:  9351 
  • 3c Saito S. Sone T. Shimada K. Yamamoto H. Synlett  1999,  81 
  • 3d Shindo M. Koga K. Asano Y. Tomioka K. Tetrahedron  1999,  55:  4955 
  • 3e Kolotuchin SV. Meyers AI. J. Org. Chem.  2000,  65:  3018 
  • 3f Saito S. Sone T. Murase M. Yamamoto H. J. Am. Chem. Soc.  2000,  122:  10216 
  • 3g Tomioka K. Shioya Y. Nagaoka Y. Yamada KI. J. Org. Chem.  2001,  66:  7051 
  • 4a Padwa A. Filipkowski MA. Kline DN. Murphree S. Yeske PE. J. Org. Chem.  1993,  58:  2061 
  • 4b Ahmed A. Clayden J. Rowley M. Chem. Commun.  1998,  297 
  • 4c Ahmed A. Clayden J. Rowley M. Synlett  1999,  1954 
  • 4d Aggarwal VK. Ferrara M. Org. Lett.  2000,  2:  4107 
  • 4e Clayden J. Menet CJ. Mansfield DJ. Org. Lett.  2000,  2:  4229 
  • 4f Clayden J. Tchabanenko K. Yasin SA. Turnbull MD. Synlett  2001,  302 
  • 5 Fernández I. López-Ortiz F. Tejerina B. García-Granda S. Org. Lett.  2001,  3:  1339 
  • 6a Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological Activity   Kukhar VP. Hudson HR. John Wiley; New York: 2000. 
  • 6b Chebib M. Johnston GAR. J. Med. Chem.  2000,  43:  1427 
  • 7a

    Compound 6a,b have been previously synthesized through the reaction of PCl3 with the corresponding benzylamine. No yields were given. Our modification afforded the desired product quantitatively. The 1H and 31P NMR spectra of the crude products indicated a purity higher than 97%. Therefore, the compounds were used without additional purification by distillation.

  • 7b For 6a (bp 165 ºC/0.15 Torr) see: Imbery D. Friebolin H. Z. Naturforsch. B  1968,  23:  759 
  • 7c For 6b (δ (31P, 30% CHCl3) = 138.1 ppm) see: Gouesnard JP. Dorie J. Martin GJ. Can. J. Chem.  1980,  58:  1295 
  • 11a Mann FG. Watson J. J. Org. Chem.  1948,  13:  502 
  • 11b Imamoto T. Kikuchi S.-I. Miura T. Wada Y. Org. Lett.  2001,  3:  87 
  • 12 Myers AG. Gleason JL. Yoon T. Kung DW. J. Am. Chem. Soc.  1997,  119:  656 
  • 13 Woll MG. Lai JR. Guzei IA. Taylor SJC. Smith MEB. Gellman SH. J. Am. Chem. Soc.  2001,  123:  11077 
8

The structural analysis included 1D (1H, 13C, 31P, DEPT, selective TOCSY) and 2D (gHMQC, gHMBC and gNOESY) NMR experiments.

9

s-BuLi (1.2 mL of a 1.3 M solution in cyclohexane, 1.56 × 10-3 mol) was added to a stirred solution of 9a (6.23 × 10-4 mol) in THF (30 mL) at -90 ºC. After 30 min of metallation MeOH (1.87 × 10-2 mol) was added and the reaction was stirred at -90 ºC for 20 min. Then the reaction mixture was poured into ice water and extracted with ethyl acetate (3 × 15 mL). The organic layers were dried over Na2SO4 and concentrated in vacuo. 1H, 1H{31P}, and 31P NMR spectra of the crude were measured in order to determine the stereoselectivity of the process. Precipitation from diethyl ether afforded 10a as a white solid, mp 201-203 ºC. IR (KBr): νmax = 1159 cm-1. 1H NMR (300.13 MHz, CDCl3): δ = 2.69 (d, 3 J PH = 7.8 Hz, 3 H), 3.78 (dddt, 3 J HH = 2.5, 3 J HH = 7.1 Hz, 3 J HH = 18.3, 3 J PH = 4.6 Hz, 1 H), 3.94 (dd, 3 J HH = 18.3, 2 J PH = 22.1 Hz, 1 H), 4.77 (dd, 3 J HH = 7.1, 3 J PH = 13.3 Hz, 1 H), 5.83 (dt, 3 J HH = 9.7, 3 J HH = 2.5, 4 J PH = 2.5 Hz, 1 H), 6.24 (dd, 3 J HH = 9.7, 4 J HH = 2.5 Hz, 1 H), 6.72 (dt, 3 J HH = 7.5, 4 J HH = 1.7 Hz, 1 H), 6.89 (dt, 3 J HH = 7.5, 4 J HH = 5 J PH = 1.7 Hz, 1 H), 6.96 (t, 3 J HH = 7.5 Hz, 1 H), 7.35 (d, 3 J HH = 7.5 Hz, 1 H), 7.40 (dt, 3 J HH = 7.1, 4 J HH = 1.7 Hz, 1 H), 7.47 (dd, 3 J HH = 7.9, 4 J PH = 2.7 Hz, 1 H), 7.50 (t, 3 J HH = 7.1 Hz, 2 H), 7.61 (ddd, 3 J HH = 8.1, 3 J HH = 6.9, 4 J HH = 1.2 Hz, 1 H), 7.66 (dd, 3 J HH = 7.1, 4 J HH = 1.7 Hz, 2 H), 7.78 (ddd, 3 J HH = 8.6 Hz, 3 J HH = 6.9, 4 J HH = 1.7 Hz, 1 H), 7.87 (ddd, 3 J HH = 7.1, 4 J HH = 1.4, 3 J PH = 15.7 Hz, 1 H), 7.91 (dd, 3 J HH = 8.2, 4 J HH = 1.7 Hz, 1 H), 8.01 (d, 3 J HH = 7.9 Hz, 1 H), 9.79 (d, 3 J HH = 8.6 Hz, 1 H) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 29.54 (d, 2 J PC = 3.9 Hz, CH3), 42.39 (d, 2 J PC = 4.8 Hz, CH), 43.31 (d, 1 J PC = 92.8 Hz, CH), 66.60 (d, 2 J PC = 8.7 Hz, CH), 124.38 (d, 3 J PC = 14.1 Hz, CH), 126.41 (CH), 126.57 (d, 3 J PC = 21.3 Hz, C), 126.68 (CH), 126.80 (d, 1 J CP = 99.1 Hz, C), 126.84 (d, 3 J PC = 6.0 Hz, CH), 127.04 (CH), 127.16 (CH), 127.33 (CH), 127.56 (CH), 127.80 (CH), 127.98 (CH), 128.13 (2 CH), 128.84 (3 CH), 129.15 (CH), 130.22 (C), 133.67 (d, 4 J PC = 3.3 Hz, CH), 134.01 (d, 2 J PC = 9.0 Hz, C), 134.18 (d, 2 J PC = 10.5 Hz, CH), 135.62 (d, 3 J PC = 11.1 Hz, C), 137.54 (C) ppm. 31P NMR (121.50 MHz, CDCl3): δ = 45.74 ppm. Anal. Calcd for C28H24NOP: C, 79.82; H, 5.70; N, 3.32. Found: C, 79.83; H, 5.72; N, 3.31. MS (API-ES): m/z = 422 (M+1).

10

The preference for the trans junction may be explained through the coordination of the lithium cation with the oxygen atoms of the methanol and the P-O linkage from the same face of the thicyclic system.