Synlett 2002(5): 0692-0696
DOI: 10.1055/s-2002-25363
LETTER
© Georg Thieme Verlag Stuttgart · New York

From Phenols to Azulenes: An Extended and Versatile Route to Polyalkylated Azulenes with Variable Substitution Patterns at the Seven- and Five-membered Ring

Matthias Nagel*a, Hans-Jürgen Hansenb
a Eidgenössische Materialprüfungs und Forschungsanstalt EMPA (Swiss Federal Laboratories for Materials Testing and Research), Überlandstrasse 129, 8600 Dübendorf, Switzerland
Fax: +41(1)8234015; e-Mail: matthias.nagel@empa.ch;
b Organisch-chemisches Institut der Universität, Winterthurerstrasse 190, 8057 Zürich, Switzerland
Fax: +41(1)6356812; e-Mail: h.-j.h@access.unizh.ch;
Further Information

Publication History

Received 16 November 2001
Publication Date:
07 February 2007 (online)

Abstract

Polyalkylated azulenes can easily be prepared from polyalkylphenyl propiolates which are transformed by dynamic gas phase thermo-isomerization (DGPTI) into polyalkylcyclohepta[b]furan-2(2H)-ones. The latter react thermally with enol ethers or enamines to the corresponding azulenes. The enamines may be generated in situ from corresponding aminals, especially, in cases where it is difficult to obtain the pure enamines due to their high reactivity.

    References

  • 1a Briquet AAS. Uebelhart P. Hansen H.-J. Helv. Chim. Acta  1996,  79:  2282 
  • 1b El Houar S. Hansen H.-J. Helv. Chim. Acta  1997,  80:  253 
  • 1c Song J. Helv. Chim. Acta  1999,  82:  2260 
  • 1d Song J. Maillefer S. Hansen H.-J. Double-bond shifts(dbs) in bis-π-substituted heptalenes as new potential systems for molecular switches or data storage, Book of Abstracts   217th ACS National Meeting; Anaheim California: 1999. ; Chem Abstr. 1999,145525
  • 1e Uebelhart P. Linden A. Hansen H.-J. Ustynyuk YA. Trifonova OA. Akhmedov NG. Mstislavsky VI. Helv. Chim. Acta  1999,  82:  1930 
  • 1f Lellek V. Hansen H.-J. Helv. Chim. Acta  2001,  84:  1712 
  • 1g Ott P. Hansen H.-J. Helv. Chim. Acta  2001,  84:  2670 
  • 2 Meyer M. Abou-Hadeed K. Hansen H.-J. Helv. Chim. Acta  2000,  83:  2383 ; and references cited therein
  • 3 Nagel M. Diploma thesis   University of Zürich; Switzerland: 1998. 
  • 4a Nagel M. Hansen H.-J. Helv. Chim. Acta  2000,  83:  1022 
  • 4b

    In addition, several grams of 4,8-dimethylcyclohepta[b]furan-2(2H)-one(12b) were prepared analogously as described from 2,6-dimethylphenyl prop-2-ynoate(9b). Selected spectroscopic data of 9b (colorless solid): 1H NMR (300 MHz, CDCl3): 7.06 (br s, 3 H); 3.03 (s, 1 H), 2.18 (s, 6 H). 13C NMR (75 MHz, CDCl3): 150.3 (s, C=O), 147.2 (s, arom. C-O), 129.9 [s, C(2′,6′)], 128.7 [d, C(3′,5′)], 126.5 [d, C(4)], 76.5 [d, C(3)], 74.0 [s, C(2)], 16.1 (q, o-CH3). Data of 12b: 1H NMR (300 MHz, CDCl3): 6.93 (d, J = 8.9 Hz, 1 H); 6.84 (d, J = 11.4 Hz, 1 H); 6.67 (dd, J = 8.9, 9.9 Hz, 1 H); 5.57 (s, 1 H); 2.40 (s, 3 H); 2.28 (s, 3 H). 13C NMR (75 MHz, CDCl3): 168.0, 152.4, 151.7, 137.5 (4 s), 134.6, 133.4, 127.8 (3 d), 125.0 (s), 95.5 (d), 23.2, 18.6 (2 q).

  • For leading references, see:
  • 5a Heilbronner E. In Nonbenzoid Aromatic Compounds   Ginsburg D. Interscience; New York: 1959.  p.171-276  
  • 5b Keller-Schierlein W. In Non-Benzenoid Aromatic Compounds   Ginsburg D. Interscience; New York: 1959.  p.237-277  
  • 5c Zeller KP. In Houben-Weyl   Vol. V/2c:  Kropf H. Thieme; Stuttgart: 1985.  p.127-418  
  • 5d Lloyd D. Non-Benzoid Conjugated Carbocyclic Compounds   Elsevier; Amsterdam: 1984.  p.351-377  
  • 5e cf. also: Lloyd D. The Chemistry of Conjugated Cyclic Compounds   J. Wiley and Sons; Chichester: 1989.  p.161-169  
  • 5f For a recent synthesis of substituted azulene derivatives, see e.g.: Kane JL. Shea K M. Crombie AL. Danheiser RL. Org. Lett.  2001,  3:  1081 ; and references cited therein
  • 5g For a historical flashback, see: Hansen H.-J. Chimia  1996,  50:  489 
  • 5h Hansen H.-J. Chimia  1997,  51:  147 
  • 6a Some polymethylazulenes were investigated earlier in a broad and systematic study of their photoelectron (PE) spectra, but no details of their syntheses were given. cf.: Heibronner E. Hoshi T. von Rosenberg JL. Hafner K. Nouv. J. Chim.  1977,  1:  105 ; see also discussion in ref.4
  • 6b Cf. also e.g.: Pommer H. Angew. Chem.  1950,  62:  281 
  • 7a Yang PW. Yasunami M. Takase K. Tetrahedron Lett.  1971,  4275 
  • 7b Yasunami M. Chen A. Yang PW. Takase K. Chem. Lett.  1980,  579 
  • 7c Nozoe T. Yang P.-W. Wu C.-P. Huang T.-S. Lee T.-H. Okai H. Wakabayashi H. Ishikawa S. Heterocycles  1989,  29:  1225 
  • 7d Nozoe T. Wakabayashi H. Shindo K. Ishikawa S. Wu C.-P. Yang P.-W. Heterocycles  1991,  32:  213 
  • 7e Yasunami M. Kitamori Y. Kikuchi I. Ohmi H. Takase K. Bull. Chem. Soc. Jpn.  1992,  65:  2127 
  • 7f Yasunami M. Miyoshi S. Kanegae N. Takase K. Bull. Chem. Soc. Jpn.  1993,  66:  892 
  • 7g

    See also ref. [1f] [3]

  • 7h See, e.g.: Nozoe T. Takase K. Fukuda S. Bull. Chem. Soc. Jpn.  1971,  44:  2215 ; and references therein
  • 7i An example, starting with the naturally occurring 4-isopropyltropolone (γ-thujaplicine, 5b), is illustrated in Scheme 1: Yokota M. Yanagisawa T. Kosakai K. Wakabayashi S. Tomiyama T. Yasunami M. Chem. Pharm. Bull.  1994,  42:  865 
  • 7j This route was also applied for the synthesis of the antiulcer drug eugalen sodium (KT1-32, sodium 3-ethyl-7-isopropylazulene-1-sulfonate): Yanagisawa T. Kosakai K. Tomiyama T. Yasunami M. Takase K. Chem. Pharm. Bull.  1990,  38:  3355 ; cf. also ref.5e
  • 8a Briquet AAS. Hansen H.-J. Helv. Chim. Acta  1994,  77:  1577 
  • 8b See also: Briquet AAS. Ph. D. Thesis   University of Zürich; Switzerland: 1993. 
  • 9a Pauson PL. Chem. Rev.  1955,  55:  9 
  • 9b Nozoe T. Fortschr. Chem. org. Naturst.  1956,  13:  232 
  • 9c Cf., e.g.: Takayasu T. Nitta M. J. Chem. Soc., Perkin Trans. 1  1997,  681 
  • 10a Trahanovsky WS. Emeis SL. Lee AS. J. Org. Chem.  1976,  41:  4043 
  • 10b Cf. also: Brown RFC. Recl. Trav. Chim. Pays-Bas  1988,  107:  655 
  • 10c Similar thermal acetylene-vinylidene rearrangements are involved in the pyrolytic cycloisomerization of, e.g., α-alkynones: Karpf M. Dreiding AS. Helv. Chim. Acta  1979,  62:  852 
  • 10d Cf. also: Kaneti J. Helv. Chim. Acta  2000,  83:  836 
  • 10e Karpf M. Angew. Chem. Int. Ed. Engl.  1986,  25:  414 ; Angew. Chem. 1986, 98: 413
  • 10f Brown RFC. Pyrolytic Methods in Organic Chemistry: Application of Flow and Flash Vacuum Pyrolytic Techniques   Academic Press; New York: 1980. 
  • 10g Cf. also: Ondruschka B. Zimmermann G. Remmler M. Ziegler U. Kopinke F.-D. Olk B. Findeisen M. Chem. Ber.  1989,  122:  715 
  • 10h Scott LT. Hashemi MM. Meyer DT. Warren H. J. Am. Chem. Soc.  1991,  113:  7082 
  • 10i

    Cf. also the discussion in ref. [3] .

  • 11a Kuehne ME. J. Am. Chem. Soc.  1959,  81:  5400 
  • 11b Leonard NJ. Jann K. J. Am. Chem. Soc.  1962,  84:  4806 
  • 12a Pfau AS. Plattner PA. Helv. Chim. Acta  1936,  19:  858 
  • 12b Plattner PA. Pfau AS. Helv. Chim. Acta  1937,  20:  224 
  • 12c Susz B. Pfau AS. Plattner PA. Helv. Chim. Acta  1937,  20:  469 
  • 12d Pfau AS. Plattner PA. Helv. Chim. Acta  1939,  22:  202 ; cf. also literature cited in ref.3
  • 12e Sörensen NA. Hougen F. Acta Chem. Scand.  1948,  2:  447 
  • 12f Takeda K. Minato H. Horibe I. Tetrahedron  1963,  19:  2307 
  • 12g Hayashi S. Kurokawa S. Matsuwa T. Bull. Chem. Soc. Jpn.  1969,  42:  1404 
  • 12h Bellesia F. Pagnoni UM. Trave R. J. Chem. Soc., Chem. Commun.  1976,  34 
  • 14 Carlson R. Nilsson A. Strömqvist M. Acta Chem. Scand., Ser. B  1983,  37:  7 
  • 16a The well-established Ziegler-Hafner procedure, starting from the corresponding trimethylpyrylium salt and sodium cyclopentadienide, delivers optimized yields of 20 in the order of 45-65%: Hafner K. Kaiser H. Liebigs Ann. Chem.  1958,  618:  140 
  • 16b cf. also: Org. Synth. Coll. Vol. V   J. Wiley and Sons; New York: 1964.  p.1088-1091  
  • 16c For NMR data, see also: Braun S. Kinkeldei J. Tetrahedron  1977,  33:  1827-1832  ; and references therein.
  • 16d Cf.: Matsubara Y. Takekuma S. Yokoi K. Yamamoto H. Nozoe T. Bull. Chem. Soc. Jpn.  1987,  60:  1415 
  • 16e Collins MJ. Sternhell S. Tansey CW. Aust. J. Chem.  1990,  43:  1541 
  • 16f Fallahpour R.-A. Hansen H.-J. Helv. Chim. Acta  1995,  78:  1419 
  • 17 Hafner"s synthesis (cf. ref.16a) leads to badly separable mixtures of 1,4,6,8- and 2,4,6,8-tetramethylazulene (23, and 25, respectively): Anderson AG. Anderson RG. Hollander GT. J. Org. Chem.  1965,  30:  131 ; cf. also ref.5c
  • For further literature, including spectroscopic characterizations, see:
  • 18a Chen Y. Kunz RW. Uebelhart P. Weber RH. Hansen H.-J. Helv. Chim. Acta  1992,  75:  2447 
  • 18b Fallahpour RA. Hansen H.-J. Helv. Chim. Acta  1992,  75:  2210 
  • 18c Rippert AJ. Ph. D. Thesis   University of Zürich; Switzerland: 1994. 
  • For the preparation of pyrrolidine enamines from aminals cf.:
  • 20a Mannich G. Davidsen H. Ber. Deutsch. Chem. Ges.  1936,  69:  2106 
  • 20b Opitz G. Hellmann H. Schubert HW. Liebigs Ann. Chem.  1959,  623:  112 
  • 20c Igarashi M. Tada M. J. Heterocyclic Chem.  1995,  32:  807 ; and references therein
  • 20d

    In situ aminal thermolysis (general method): Finely powdered, dry K2CO3 (1.2-2 mol equiv) was suspended in toluene, and pyrrolidine (2 mol equiv) was added. The aldehyde (1 mol equiv) was added with stirring at 0-5 °C and the suspension stirred for 12 h at r.t. (inert gas atmosphere). After filtration (or centrifugation) the slightly yellowish ‘aminal solutions’ were used without further purification. The cyclohepta[b]furan-2(2H)-ones 12 were dissolved in TEGDME (or NMP or toluene, respectively) and heated with stirring together with about 5-7 mol equiv of the ‘aminal solution’ to 120-140 °C in a stainless steel autoclave or Schlenk flask, respectively. Within 12-36 h the mixture changed the color from yellow to reddish brown and finally to violet with a slight evolution of gas (CO2). The formation of the azulenes was monitored by TLC analyses after acidic work-up of aliquot parts of the product mixture. Finally, the mixtures were poured in diluted HCl solution (pH ca. 4-5) and the organic phase dissolved in hexane. The intensely blue-green to red-violet colored organic layers were washed several times with diluted HCl solutions and brine, and filtered through a pad of silica gel or alox. The now blue or violet organic phases were dried (NaSO4) and the solvent removed. The azulenes were subsequently purified by column chromatography on alox (basic, act. IV) or on silica gel with hexane as eluent.

  • 21a Hafner K. Angew. Chem.  1958,  70:  419 
  • 21b Hafner K. Stephan A. Bernhard C. Liebigs Ann. Chem.  1961,  650:  42 
  • 21c Hafner K. Stephan A. Bernhard C. Liebigs Ann. Chem.  1961,  650:  62 
13

Typical procedure for the synthesis of 2-isopropyl-4,8-dimethylazulene (vetivazulene or elemazulene, 16): In a thick-walled 15 mL Pyrex tube, equipped with a srew cap and a magnetic stirrer, 300 mg to 500 mg of 4,8-dimethylcyclohepta[b]furan-2(2H)-one (12b) were dissolved in 10 mL of either a mixture of anhyd toluene and t-BuOH (ca. 3:1 to 1:1, to enhance the solubility of 12b) or pure t-BuOH. Then, 1.5-2.5 mL of enamine 15 (prepared according to ref. [14] ) were added, and the tube was sealed and heated in an oil bath to 120-130 °C for 12-16 h with stirring. During this time, the color of the reaction mixture changed from orange to reddish brown or dark violet. The formation of the violet azulene 16 was directly monitored by TLC analyses of aliquot parts of the mixture (alox plates, eluant hexane). Samples were taken from the tube after cooling to r.t. (a small pressure relief was observed, due to the evolution of equimolar amounts of CO2 during the reaction).
Work-up: The reaction mixture was poured into about 50 mL of hexane and washed several times with water (to hydrolyze the excess of non-reacted enamine), successively with 5% HCl solution, and sat. NaHCO3 solution. After evaporation of the volatile components in vacuo the dark-colored oily residue was filtered through a pad of aluminium oxide (or SiO2) with hexane as eluant. The violet filtrate was collected, dried on MgSO4 and concentrated. After purification by column chromatography on aluminium oxide with hexane as eluant, azulene 16 was obtained as blue-violet oil (GC purity > 95%) in typical yields of 70-80% (cf. also the similar general procedure in ref. [20d] ). Selected spectroscopic data of 16: 1H NMR (300 MHz, CDCl3): 7.34 [t, J = 10.2 Hz, H-C(6)]; 7.25 [s, H-C(1,3)]; 7.07 [d, J = 10.2 Hz, H-C(5,7)]; 3.30 [sept, J = 6.9 Hz, 1 H, iPr-C(2)]; 2.88 [s, H3C-C(4,8)]; 1.43 (d, J = 6.9 Hz, 6 H, iPr-C(2)). 1H NMR (300 MHz, C6D6): 7.33 (s, 2 H); 7.11 (t, J = 10.0 Hz, 1 H), 6.83 (d, J = 10.2 Hz, 2 H); 3.29 (sept, J = 6.9 Hz, 1 H); 2.65 (s, 6 H); 1.45 (d, J = 6.9 Hz, 6 H).13C NMR (75 MHz, CDCl3): 158.0 [C(2)], 144.6 [C(4,8)], 137.7 [C(3a,8a)], 133.5 [C(6)], 125.5 [C(5,7)], 113.5 [C(1,3)], 30.1 [d, iPr-C(2)], 24.5 [Me-C(4,8)], 24.0 [q, iPr-C(2)]. EI-MS: 199.0 (22), 198.0 (92, M), 182.9 (100, M - 15), 168.0 (55, M - 30), 165.0 (47, M - 43).

15

Preparations of azulenes 17 and 35 were performed analogously to the procedure described in ref. [13] Selected spectroscopic data of 2-isopropyl-4,6,8-trimethylazulene (17) (reddish-violet oil): 1H NMR (300 MHz, CDCl3): 7.17 (s, 2 H); 7.00 (s, 2 H), 3.26 (sept, J = 6.9 Hz, 1 H); 2.83 (s, 6 H); 2.28 (s, 3 H); 1.41 (d, J = 6.9 Hz, 6 H).1H NMR (300 MHz, C6D6): 7.32 (s, 2 H); 6.82 (s, 2 H); 3.30 (sept, 1 H); 2.67 (s, 6 H); 2.30 (s, 3 H); 1.47 (d, J = 6.9 Hz, 6 H). 13C NMR (75 MHz, CDCl3): 156.5, 144.1, 143.5 136.2 (4 s), 127.2 (d), 113.4 (s), 29.9 (d), 28.4, 24.8, 23.9 (3 q). EI-MS: 212.0 (87, M), 197.0 (100, M - 15). Data of 2-isopropyl-4,5,7,8-tetramethylazulene (35) (dark-blue solid): 1H NMR (300 MHz, CDCl3): 7.50 (s, 1 H); 7.14 (s, 2 H), 3.25 (sept, J = 6.9 Hz, 1 H); 2.72 (s, 6 H); 2.51 (s, 6 H); 1.41 (d, J = 6.9 Hz, 6 H).1H NMR (300 MHz, C6D6): 7.37 (s, 3 H); 3.34 (sept, 1 H); 2.58 (s, 6 H); 2.30 (s, 6 H); 1.50 (d, J = 6.9 Hz, 6 H). 13C NMR (75 MHz, CDCl3): 157.2, 142.6 (2 s), 139.7 (d), 138.6, 130.2 (2 s), 111.7, 30.0 (2 d), 26.8, 23.9, 21.1 (3 q). EI-MS: 226.0 (100, M), 211.0 (65, M - 15).

19

Cf. ref. [1g] and references cited therein.

22

For azulene formation from 12e by cycloaddition with itself or with other cyclohepta[b]furan-2(2H)-ones such as 12a or 12c, see ref. [1f]

23

Data of selected azulenes: For 14, 33 and 34, see ref. [4] . NMR data (standard conditions: 300/75.5 MHz, in CDCl3/TMS): 1,4,6,8-Tetramethylazulene(23): (violet-blue cyrstals) 1H NMR: 7.44 [d, 3 J {H-C(3)} = 4 Hz, H-C(2)]; 7.24 [d, 3 J {H-C(2)} = 4 Hz, H-C(3)]; 6.86 [br s, H-C(5,7)]; 3.02 [s, CH3-C(8)]; 2.81 [s, CH3-C(4)]; 2.56 [br s, 6 H, CH3-C(1), CH3-C(6)]. 13C NMR: 147.1 [C(8)], 145.7 [C(6)]; 144.9 [C(4)]; 136.7 [C(3a)]; 136.5 [C(2)]; 132.9 [C(8a)]; 127.7 [C(7)]; 126.8 [C(1)]; 125,6 [C(5)]; 114.6 [C(3)]; 28.4 [CH3-C(8)]; 27.7 [CH3-C(6)]; 25.3 [CH3-C(4)]; 19.7 [CH3-C(1)]. EI-MS (GC-MS): 184 (100, M), 169 (85, [M - CH3]). 2,4,6,8-Tetramethylazulene (25): (blue-violet crystals) 1H NMR: 7.12 [s, H-C(1,3)]; 7.02 [s, H-C(5,7)]; 2.82 [s, H3C-C(4,8)]; 2.61, 2.598 [2 s, H3C-C(6), H3C-C(2)]. 13C NMR: 145.0, 144.0, 143.0, 136.5 [4 q, C(2,3a/8a,4/8,6)]; 127.2 [d, H-C(5/7)]; 116.3 [d, H-C(5/7)]; 28.4 [q, H3 C-C(6)]; 24.8 [q, H3 C-C(4/8)]; 16.4 [q, H3 C-C(2)]. EI-MS (GC-MS): 184 (100, M), 169 (65, [M - CH3]). 2-Ethyl-4,6,8-trimethylazulene (28): 1H NMR (taken from the 1:1 mixture with known 27): 7.12 [ s , H-C(1,3)]; 6.99 [(H-C(5,7)]; 3.03 [q, J = 7.4 Hz,
Me-CH 2-C(2)]; 2.81 [s, CH3-C(4,8)]; 2.60 [s, CH3-C(6)]; 1.32 [t, J = 7.4 Hz, CH 3-CH2-C(2)]. EI-MS (GC-MS): 198 (100, M + ), 183 (75, [M - CH3]+ ). 1-Ethyl-4,6,8-trimethylazulene (30): 1H NMR: 7.52 [d, 3 J = 4 Hz, H-C(2)]; 7.28 [d, J = 4 Hz, H-C(3)]; 6.86 [br s, H-C(5,7)]; 3.25 (q, J = 7.4 Hz, H 2CCH3); 2.98, 2.80, 2.53 (3 s, 3 CH3); 1.36 (t, J = 7.4 Hz, H2CCH 3). 13C NMR: 146.7, 145.6, 144.9, 136.8 (4s, arom C); 134,6 [d, H-C(2)]; 133.8 132.0 (2 s, arom. C); 128.1, 125.9, 115.1 (3 d, H-C); 28.4, 27.5, 25.5 (3 q, CH3); 25.3 (t, CH 2CH3); 17.1 (q, CH3). EI-MS (GC-MS): 198 (35, M), 183 (100, [M - CH3]). 1-Isopropyl-4,6,8-trimethylazulene (32): (blue oil) 1H NMR: 7.69 [d, J = 4.2 Hz, H-C(2)]; 7.33 [d, J = 4.2 Hz, H-C(3)]; 6.98, 6.88 [2 s, H-C(5), H-C(7)]; 3.91 [sept, J = 6.7 Hz, H-C(CH3)2]; 3.03, 2.82, 2.54 (3 s, 3 CH3); 1.38 [d, J = 6.7 Hz, H-C(CH 3)2]. 13C NMR: 146.2, 145.3, 144.8, 139.2, 136.7 (5 s), 131.8 (d), 130.9 (s); 128.5, 126.0, 115.5 (3 d, arom C-H); 28.5 [d, H-C(CH3)2]; 28.3, 28.1, 26.0, 25.9, 25.6 (5 q, CH3). EI-MS (GC-MS): 212 (25, M), (100, [M - CH3]). 4,5,7,8-Tetramethylazulene (36) (blue oil): 1H NMR: 7.70 [t, J = 4.0 Hz, H-C(2)]; 7.66 [s, H-C(6)]; 7.39 [d, J = 4.0 Hz, H-C(1,3)]; 2.83 (s, 2 CH3); 2.60 (s, 2 CH3). 13C NMR: 144.8 [s, C(3a,8a)]; 141,3 [d, H-C(6)]; 138.4 [s, C(4,8)]; 133.3 [d, H-C(2)]; 130,2 [s, C(5,7)]; 114.2 [d, H-C(1,3)]; 26.8, 21.4 (2 q). EI-MS (GC-MS): 184 (100, M), 169 (85, [M - CH3]). 1,4,5,7,8-Pentamethylazulene (37): 1H NMR: 7.60 [d, J = 4.1 Hz, H-C(2)]; 7.37 [d, J = 4.1 Hz, H-C(3)]; 2.79, 2.60, 2.54 (3 s, CH3); 2.33 (s, 2 CH3). 13C NMR: 146.6, 143.8 [2 q, C(3a), C(8a)]; 140.8 [d, H-C(6)]; 140.0 (q, arom C); 138.1 [d, H-C(2)]; 136.5, 134.7, 130.0, 128.9 (4 q, arom C), 114.1 [d, H-C(3)]; 27.2, 26.4, 23.1, 21.4, 20.5 (5 q, CH3). 1-Isopropyl-4,5,7,8-tetramethylazulene (38): (dark blue oil) 1H NMR: 7.72 [d, J = 4.4 Hz, H-C(2)]; 7.44 [s, H-C(6)]; 7.27 [d, J = 4.4 Hz, H-C(3)]; 3.80 [sept, J = 6.9 Hz, H-C(CH3)2]; 2.83, 2.76 (2 s, CH3); 2.51 (s, 2 CH3); 1.37 [d, J = 6.7 Hz, H-C(CH 3)2]. EI-MS (GC-MS): 226 (30, M), 211 (100, [M - CH3]). 4,5,6,7,8-Pentamethylazulene (40) [1f] (blue crystals): 1H NMR: 7.56 [t, J = 4.3 Hz, H-C(2)]; 7.25 [d, J ˜ 4 Hz, H-C(1,3)]; 2.84 (br s, 6 H, 2 CH3); 2.52 (s, 3 H, CH3); 2.47 (s, 6 H, 2 CH3). 13C NMR: 145.3, 144.4, 137.6 (3 s); 132.1 [d, C(2)]; 130.5 (s); 113.9 [d, C(1,3)]; 24.5, 22.7, 22.5 (3 q). 1,4,5,6,7,8-Hexamethylazulene (39): (blue-violet oil) 1H NMR: 7.20 [d, J = 3.9 Hz, H-C(2)]; 6.99 [d, J = 3.9 Hz, H-C(3)]; 2.75, 2.70, 2.68, 2.37 (4 s, 4 CH3); 2.33 (br s, 2 CH3).