Minim Invasive Neurosurg 2002; 45(1): 1-5
DOI: 10.1055/s-2002-23585
Original Article
Georg Thieme Verlag Stuttgart · New York

An In Vitro Study to Evaluate the Accuracy of Stereotactic Localization Using Magnetic Resonance Imaging by Means of the Leksell Stereotactic System

J.  Gliemroth1 , C.  Gaebel2 , U.  Kehler1 , I.  Grande-Nagel3 , U.  Missler2 , H.  Arnold1
  • 1 1Department of Neurosurgery, Medical University of Lübeck, Lübeck, Germany
  • 2 2Department of Neuroradiology, Medical University of Lübeck, Lübeck, Germany
  • 3 3Institute of Radiology, Medical University of Lübeck, Lübeck, Germany
Further Information

Publication History

Publication Date:
02 April 2002 (online)

Abstract

The advantages of using magnetic resonance imaging (MRI) as opposed to computed tomographic (CT) scans or ventriculography in stereotactic surgery include the increased tissue contrast of the lesion or target, direct non-reformatted multiplanar imaging and target coordinate determination as well as reduced imaging artefacts produced by the stereotactic frame. One disadvantage of MR stereotaxis, however, is the potential for anatomic inaccuracy due to equipment-induced inhomogeneities of the magnetic field. The authors present an experimental study on an in vitro model to examine the accuracy of target localization using the Leksell stereotactic frame and MR imaging. Ten formalin-fixed brains taken from patients who had died of non-neurological diseases were sealed in a properly modelled plaster-cast shell simulating the skull bone. These models were fixed in the Leksell stereotactic frame and high-field MR images were performed (Siemens Magnetom SP 1.5 Tesla, T1-weighted spin echo sequences, TR/TE 600/15 ms, slice thickness 2 mm, FOV 300 mm). Following electrocoagulation of different targets on both lentiforme nuclei, the localization and extension of the lesions were controlled by MRI. A gross-/histopathological verification was performed. This model allows a good representation of the anatomic structures without any artefacts. The postoperative MRI control and the pathological examination of the lesions matched well with the preoperatively defined targets. The correlation of coordinates and measurements obtained with the pathological studies were within a ± 2 mm range in all cases.

References

  • 1 Alterman R L, Kall B A, Cohen H, Kelly P J. Stereotactic ventrolateral thalamotomy: is ventriculography necessary?.  Neurosurgery. 1995;  7 717-771
  • 2 Hardy T L, Smith J R, Brynildson L RD, Flanigan H F, Gray J G, Spurlock D. Magnetic resonance imaging and anatomic atlas mapping for thalamotomy.  Stereotact Func Neurosurg. 1992;  58 30-32
  • 3 Bradford R, Thomas D GT, Bydder G M. MRI-directed stereotactic biopsy of cerebral lesions.  Acta Neurochir Suppl. 1987;  39 25-27
  • 4 Villemure J G, Marchand E, Peters T, Leroux G, Olivier A. Magnetic resonance imaging stereotaxy: recognition and utilization of the commissures.  Appl Neurophysiol. 1987;  50 57-62
  • 5 Kelly P J. Contemporary stereotactic ventralis lateral thalamotomy in the treatment of parkinsonian tremor and other movement disorders. In: Heilbrun MP (ed), Stereotactic Neurosurgery, Vol. 2 Williams and Wilkins, Baltimore 1988: 133-148
  • 6 Siegfried J. Thalamotomy for Parkinson's disease. In: Lunsford LD (ed), Modern stereotactic neurosurgery. Nijhoff, Boston 1988: 333-340
  • 7 Tasker R R, Yamashiro K, Lenz F, Dostrovsky J O. Thalamotomy for Parkinson's disease: Microelectrode technique. In: Lunsford LD (ed), Modern stereotactic neurosurgery. Nijhoff, Boston 1988: 297-314
  • 8 Tasker R R, Dostrovsky J O, Dolan E J. Computerized tomography (CT) is just as accurate as ventriculography for functional stereotactic thalamotomy.  Stereotact Funct Neurosurg. 1991;  57 157-166
  • 9 Hariz M I, Bergenheim A T, Fodstad H. Air-ventriculography provokes an anterior displacement of the third ventricle during functional stereotactic procedures.  Acta Neurochir. 1993;  123 147-152
  • 10 Hariz M I, Bergenheim A T. Clinical evaluation of computed tomography-guided versus ventriculography-guided thalamotomy for movement disorders.  Acta Neurochir Suppl. 1993;  58 53-55
  • 11 Page R D, Miles J B. Validation of CT targeting for functional stereotaxis with postoperative magnetic resonance imaging.  Br J Neurosurg. 1994;  8 461-467
  • 12 Aziz T, Torrens M. CT-guided thalamotomy in the treatment of movement disorders.  Br J Neurosurg. 1989;  3 333-336
  • 13 Uematus S, Rosenbaum A E, Delong M R, Citrin C M, Jankel W R, Kumar A J, McArthur J C, Nauta H J, Sherman J, Narabayashi H. Magnetic resonance planned thalamotomy followed by X-ray/CT-guided thalamotomy.  Acta Neurochir Suppl. 1987;  39 21-24
  • 14 Mundinger F, Birg W, Klar M. Computer-assisted stereotactic brain operations by means of including computerized axial tomography.  Appl Neurophysiol. 1978;  41 169-182
  • 15 Asakura T, Uetsuhara K, Kanemaru R, Hirahara K. An applicability study on a CT-guided stereotactic technique for functional neurosurgery.  Appl Neurophysiol. 1985;  48 73-76
  • 16 Laitinen L V. CT-guided ablative stereotaxis without ventriculography.  Appl Neurophysiol. 1985;  48 18-21
  • 17 Buchholz R D, Ho H W, Rubin J P. Variables affecting the accuracy of stereotactic localization using computerized tomography.  J Neurosurg. 1993;  79 667-673
  • 18 Patil A A, Gelber B. Accuracy of thalamotomy target determination using axial images only.  Stereotact Funct Neurosurg. 1991;  56 104-108
  • 19 Whittle I R, O'Sullivan M G, Ironside J W, Sellar R. Accuracy of ventrolateral thalamic nucleus localization using unreformatted CT scans and the BRW system. Experimental studies and clinical findings during functional neurosurgery.  Acta Neurosurg Suppl. 1993;  58 61-64
  • 20 Latchaw R E, Lunsford L D, Kennedy W H. Reformatted imaging to define the intercommissural line for CT-guided stereotaxic functional neurosurgery.  AJNR. 1985;  6 429-433
  • 21 Lunsford L D. Magnetic resonance imaging stereotactic thalamotomy: report of a case with comparison to computed tomography.  Neurosurgery. 1988;  23 363-367
  • 22 Peters T M, Clark J, Pike B, Drangova M, Olivier A. Stereotactic surgical planning with magnetic resonance imaging, digital subtraction angiography and computed tomography.  Appl Neurophysiol. 1987;  50 33-38
  • 23 Schad L, Lott S, Schmitt F, Sturm V, Lorenz W J. Correction of spatial distortion in MR imaging: a prerequisite for accurate stereotaxy.  J Comp Ass Tomogr. 1987;  11 499-505
  • 24 Kondziolka D, Dempsey P K, Lunsford L D, Kestle J RW, Dolan E J, Kanal E, Tasker R R. A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination.  Neurosurgery. 1992;  30 402-407
  • 25 Sumanaweera T S, Adler Jr J R, Napel S, Glover G H. Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery.  Neurosurgery. 1994;  35 696-704
  • 26 Kooy H M, van Herk M, Barnes P D, Alexander E, Dunbar S F, Tarbell N J, Mulkern R V, Holupta E J, Loeffler J S. Image fusion for stereotactic radiotherapy and radiosurgery treatment planning.  Int J Radiat Oncol Biol Phys. 1994;  28 1229-1234
  • 27 Cohen D S, Lustgarten J H, Miller E, Khandji A G, Goodman R R. Effects of coregistration of MR to CT images on MR stereotactic accuracy.  J Neurosurg. 1995;  82 772-779
  • 28 Walton L, Hampshire A, Forster D MC, Kemeny A A. A phantom study to assess the accuracy of stereotactic localization, using T1-weighted magnetic resonance imaging with the Leksell stereotactic system.  Neurosurgery. 1996;  38 170-178
  • 29 Wyper D J, Turner J W, Patterson J, Condon B R, Grossart K WM, Jenkins A, Hadley D M, Rowan J O. Accuracy of stereotaxic localisation using MRI and CT.  J Neurol Neurosurg Psychiatry. 1986;  49 1445-1448
  • 30 Lunsford L D, Martinez A J, Latchaw R E. Stereotaxic surgery with a magnetic resonance- and computerized tomography-compatible system.  J Neurosurg. 1986;  64 872-878
  • 31 Maciunas R J, Galloway R L, Latimer J W. The application accuracy of stereotactic frames.  Neurosurgery. 1994;  35 682-695
  • 32 Heilbrun M P, Sunderland P M, McDonald P R, Wells Jr T H, Cosman E, Ganz E. Brown-Roberts-Wells stereotactic frame modifications to accomplish magnetic resonance imaging guidance in three planes.  Appl Neurophysiol. 1987;  59 143-152
  • 33 Kall B A, Goerss S J, Kelly P J. A new multimodality correlative imaging technique for VOP/VIM (VL) thalamotomy procedures.  Stereotact Funct Neurosurg. 1992;  58 45-51
  • 34 Kawashima Y, Chen H J, Takahashi A, Hirato M, Ohye C. Application of magnetic resonance imaging in functional stereotactic thalamotomy for the evaluation of individual variations of the thalamus.  Stereotact Funct Neurosurg. 1992;  58 33-38

J. Gliemroth,M. D. 

Department of Neurosurgery, Medical University Lübeck

Ratzeburger Allee 160

23538 Lübeck

Germany

Phone: +49 451 500 2076

Fax: +49 451 500 6191

Email: jan-gliemroth@t-online.de

    >