Synlett 2002(4): 0583-0587
DOI: 10.1055/s-2002-22700
LETTER
© Georg Thieme Verlag Stuttgart · New York

An IMDA Approach to Tigliane and Daphnane Diterpenoids: Generation of Rings A, B and C Incorporating C-18

Philip C. Bulman Page*, Colin M. Hayman, Heather L. McFarland, David J. Willock, Natasha M. Galea
Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
e-Mail: p.c.b.page@lboro.ac.uk;
Further Information

Publication History

Received 5 February 2002
Publication Date:
05 February 2007 (online)

Abstract

A synthesis of the tricyclic ring system of the daphnane and tigliane diterpenes, incorporating C-18 and the C-13 oxygen functionality found in phorbol and related compounds is described. The convergent synthesis utilizes an intramolecular Diels-Alder reaction as the key stereocontrolling step.

    References

  • 2a Naturally Occurring Phorbol Esters   Evans FJ. CRC Press; Boca Raton: 1986. 
  • 2b Phorbol esters are found in croton oil, the oil expressed from the seeds of the purging croton, the leafy Euphorbia succulent Croton tiglium, native to south-east Asia. The seeds, formerly known as molucca grains, were in common use in Europe from the sixteenth century as a purgative and emmanagogue, having been introduced from China by the Dutch: Ainslie W. Lindley J. In A Natural System of Botany   Longman, Rees, Orme, Brown, Green, Longman; London: 1836. 
  • 2c Graves G. Morries JD. In Hortus Medicus   Adam and Charles Black; Edinburgh: 1834.  Phorbol esters are found in croton oil, the oil expressed from the seeds of the purging croton, the leafy Euphorbia succulent Croton tiglium, native to south-east Asia. The seeds, formerly known as molucca grains, were in common use in Europe from the sixteenth century as a purgative and emmanagogue, having been introduced from China by the Dutch
  • 3a Sodeoka M. Arai MA. Adachi K. Uotsu L. Shibasaki M. J. Am. Chem. Soc.  1998,  120:  457 
  • 3b Wender PA. Martin-Cantalejo Y. Carpenter AJ. Chiu A. De Brabander J. Harren PG. Jimenez J.-M. Koehler MFT. Lippa B. Morrison JA. Müller SG. Müller SN. Park C.-M. Shiozaki M. Siedenbiedel C. Skalitzky DJ. Tanaka M. Irie K. Pure Appl. Chem.  1998,  70:  539 
  • 3c Irie K. Ishii T. Ohigashi H. Wender PA. Miller BL. Takeda N. J. Org. Chem.  1996,  61:  2164 
  • 3d Liu J.-P. Mol. Cell. Endocrinol.  1996,  116:  1 
  • 3e Sugita K. Neville CF. Sodeoka H. Sasai H. Shibasaki M. Tetrahedron Lett.  1995,  36:  1067 
  • 3f Nishizuka Y. Science  1986,  233:  305 
  • 3g Farley J. Auerbach S. Nature  1986,  319:  220 
  • 4a For leading references see: Wender PA. Keenan RM. Lee HY. J. Am. Chem. Soc.  1987,  109:  4390 
  • 4b Wender PA. Kogen H. Lee HY. Munger JD. Wilhelm RS. Williams PD. J. Am. Chem. Soc.  1989,  111:  8957 
  • 4c McLoughlin JI. Brahma R. Campopiano O. Little DR. Tetrahedron Lett.  1990,  31:  1377 
  • 4d Wender PA. McDonald FE. J. Am. Chem. Soc.  1990,  112:  4056 
  • 4e Wender PA. Mascareñas JL. J. Org. Chem.  1991,  56:  6267 
  • 4f Dauben WG. Dinges J. Smith TC. J. Org. Chem.  1993,  58:  7635 
  • 4g McMills MC. Zhuang L. Wright DL. Watt W. Tetrahedron Lett.  1994,  35:  8311 
  • 4h Paquette LA. Sauer DR. Edmondson SD. Friedrich D. Tetrahedron  1994,  50:  4071 
  • 4i Rigby JH. Niyaz NM. Short K. Heeg MJ. J. Org. Chem.  1995,  60:  7720 
  • 4j Tokunoh R. Tomiyama H. Sodeoka M. Shibasaki M. Tetrahedron Lett.  1996,  37:  2449 
  • 4k Singh V. Samanta B. Tetrahedron Lett.  1999,  40:  1807 
  • 5a Harwood LM. Ishikawa T. Phillips H. Watkin D. J. Chem. Soc., Chem. Commun.  1991,  527 
  • 5b Brickwood AC. Drew MGB. Harwood LM. Ishikawa T. Marais P. Morisson V. J. Chem. Soc., Perkin Trans. 1  1999,  913 
  • 5c Harwood LM. Brickwood AC. Morisson V. Robertson J. Swallow S. J. Heterocycl. Chem.  1999,  36:  1391 
  • 6 Wender PA. Rice KD. Schnute ME. J. Am. Chem. Soc.  1997,  119:  7897 
  • 7 Lee K. Cha JK. J. Am. Chem. Soc.  2001,  123:  5590 
  • 8 Wender PA. Jesudason CD. Nakahira H. Tamura N. Tebbe AL. Ueno Y. J. Am. Chem. Soc.  1997,  119:  12976 
  • 9a For a review of IMDA reactions see: Roush WR. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Paquette LA. Pergamon Press; Oxford: 1991.  p.513 
  • 9b For leading references see: Wender PA. Jenkins TE. Suzuki S. J. Am. Chem. Soc.  1995,  117:  1843 
  • 9c See also: Taber DF. In Intramolecular Diels-Alder and Alder Ene Reactions   Springer-Verlag; Berlin: 1983. 
  • 9d See also: Parker KA. Adamchcuk MR. Tetrahedron Lett.  1978,  19:  1689 
  • 10 Page PCB. Jennens DC. Porter RA. Baldcock AN. Synlett  1991,  472 
  • 11 Page PCB. Jennens DC. J. Chem. Soc., Perkin Trans. 1  1992,  2587 
  • 12 Page PCB. Jennens DC. McFarland H. Tetrahedron Lett.  1997,  38:  5395 
  • 13 Page PCB. Jennens DC. McFarland H. Tetrahedron Lett.  1997,  38:  6913 
  • 14 Santelli M. Pons J.-M. In Lewis Acids and Selectivity in Organic Synthesis   CRC Press; Boca Raton: 1995. 
  • 16 Stewart JJP. J.Comp.Chem.  1989,  10:  209 
  • 17 Stewart JJP. J.Comput.-Aided Mol. Des.  1990,  4:  1 
  • 18a Elliott MC. Kruiswijk E. Willock DJ. Tetrahedron Lett.  1998,  39:  8911 
  • 18b Elliott MC. Kruiswijk E. Willock DJ. Tetrahedron  2001,  57:  10139 
1

Department of Chemistry, University of Cardiff, P.O. Box 912, Cardiff CF1 3TB, Wales.

15

(±)-(3a S ,6a S ,10a R ,10b S )-3-Oxo-8-triisopropylsilyloxy-1,2,3a,4,6,6a,9,10,10a,10b-decahydro-3 H -benzo[ e ]azulene-5,5,10-tricarboxylic Acid Diethyl Ester Methyl Ester (8a) and (±)-(3a S ,6a R ,10a R ,10b S )-3-Oxo-8-triisopropylsilyloxy-1,2,3a,4,6,6a,9,10,10a,10b-decahydro-3 H -benzo[ e ]azulene-5,5,10-tricarboxylic Acid Diethyl Ester Methyl Ester (8b) NB IUPAC-style numbering is used here for clarity. A screw-cap test-tube, rinsed sequentially with triethylamine and dry toluene, was charged with 16 (484 mg, 0.84 mmol), hydroquinone (4 mg, 0.04 mmol) and dry toluene (5 mL). The mixture was irradiated with ultrasound for 10 min while under a stream of nitrogen. The test-tube was sealed and heated at 160 °C for 72 h. The reaction mixture was cooled and concentrated and the crude product was purified by silica gel column chromatography [10% ethyl acetate/light petroleum (40-60 °C)] to afford a mixture of 8a and 8b (437 mg, 93%) as a colourless oil, νmax/cm-1(neat): 2945, 2866, 1730, 1683, 1464, 1251, 1206, 1162, 883, 806, 682. 1H NMR (600 MHz, C6D6): δ = 0.84 (3 H, t, J = 7.1 Hz, CH 3CH2), 0.86-0.94 (4 H, m, 1 of 1-H8b, CH 3CH2), 0.96 (3 H, t, J = 6.9 Hz, CH 3CH2), 1.00-1.21 (47 H, m, 1 × CH 3CH2, 1 of 1-H8a, 10b-H8a, 6 × CH(CH 3)2), 1.34 (1 H, dd, J = 11.8, 14.1 Hz, 1 of 4-H8b), 1.53, (1 H, ddd, J = 9.1, 9.9, 10.8, 10a-H8a), 1.58-1.71 (5 H, m, 1 of 1-H8a, 1 of 2-H8a, 1 of 1-H8b, 1 of 2-H8b, 10b-H8b), 1.73 (1 H, dd, J = 10.2, 15.2, 4-H8a), 1.78-1.82 (1 H, m, 10a-H8b), 1.93-2.04 (3 H, m, 1 of 2-H8b, 1 of 2-H8a, 3a-H8a), 2.07 (1 H, dd, J = 2.6, 10.2, 15.1 Hz, 1 of 6-H8a), 2.13-2.24 (4 H, m, 3a-H8b, 1 of 6-H8b,1 of 9-H8b, 6a-H8a), 2.33 (1 H, ddd, J = 1.7, 5.0, 16.6 Hz, 1 of 9-H8a), 2.43-2.48 (3 H, m, 1 of 6-H8b, 6a-H8b, 10-H8a), 2.59 (1 H, ddd, J = 5.3, 10.1, 10.1 Hz, 10-H8b), 2.64 (1 H, d, J = 15.1 Hz, 6-H8a), 2.69 (1 H, dddd, J = 2.2, 3.7, 11.3, 16.6 Hz, 1 of 9-H8a), 2.76 (1 H, dddd, J = 1.8, 1.8, 10.1, 17.0 Hz, 1 of 9-H8b), 3.30, (3 H, s, CO2CH 3), 3.31, (3 H, s, CO2CH 3), 3.38 (1 H, d, J = 15.2 Hz, 1 of 4-H8a), 3.45 (1 H, br ddd, J = 2.3, 2.3, 14.1 Hz, 1 of 4-H8b), 3.81-4.01 (6 H, m, 6 of CH3CH 2), 4.09 (1 H, qd, J = 7.1, 10.9 Hz, 1 of CH3CH 2), 4.15 (1 H, qd, J = 7.0, 10.5 Hz, 1 of CH3CH 2), 5.03 (1 H, dd, J = 1.8, 5.2 Hz, 7-H8b), 5.11 (1 H, dd, J = 2.2, 2.4 Hz, 7-H8a); 13C NMR (150 MHz, C6D6): δ = 13.0 (CH(CH3)2, 13.9, 14.0, 14.1, 14.2 (4 × CH2 CH3), 18.2 (CH(CH3)2), 26.2 (1-C8a), 28.6 (1-C8b), 32.3 (4-C8a), 33.4 (9-C8b), 34.6 (9-C8a), 34.8 (6a-C8b), 36.7 (2-C8a), 36.8 (6-C8b), 37.0 (3a-C8b), 37.2 (4-C8b), 37.5 (2-C8b), 42.5 (6-C8a), 43.0 (10-C8b), 44.8 (10a-C8b), 45.6 (10b-C8b), 47.2 (10-C8a), 49.1 (10a-C8a), 49.8 (6a-C8a), 51.0 (10b-C8a), 51.2, 51.3 (2 x CO2 CH3), 51.9 (3a-C8a), 55.9 (5-C8a), 57.1 (5-C8b), 61.2, 61.3, 61.35, 61.44 (4 × CH2CH3), 107.7 (7-C8b), 109.2
(7-C8a), 148.3 (8-C8a), 148.9 (8-C8b), 170.9, 171.9, 172.2, 172.3 (4 × CO2C2H5), 175.1, 175.6 (2 × CO2CH3), 214.2 (3-C8a), 215.6 (3-C8b). MS (EI): m/z = 578 (14) [M+], 535 (35), 519 (17), 324 (30), 256 (77), 69 (100). C31H50O8Si requires 578.3275, found 578.3284.