SYNLETT
Spotlight 25

This feature focuses on a reagent chosen by a postgraduate, highlighting the uses and preparation of the reagent in current research.

Crabtree’s Catalyst: [Ir(cod)pyr(PCy₃)]PF₆

Compiled by Peter G. Nell
Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA

Peter Nell was born in Haan, Germany in 1971. He studied chemistry at the Universities of Freiburg, Bristol (U.K.), and Heidelberg where he received his diploma in 1996. He obtained his Ph.D. (1999) from the University of Marburg under the supervision of Prof. R.W. Hoffmann. Currently, he is carrying out postdoctoral research in the group of Prof. P.A. Wender at Stanford University, California.

(1,5-Cyclooctadiene)(pyridine)/(tricyclohexylphosphine)iridium(I) hexafluorophosphate 1 [Ir(cod)pyr(PCy₃)]PF₆. Crabtree’s catalyst,¹ is a versatile catalyst for selective hydrogenation and hydroboration. It was first introduced by Crabtree, Felkin and Morris for the hydrogenation of hindered olefins, whether or not activating groups are present. It was later discovered that selective hydrogen addition to one face of a chiral molecule was possible in the presence of a coordinating hydroxyl group. Evans and Fu first reported the use of Crabtree’s catalyst in the catalytic directed hydroboration.

Preparation: Crabtree’s catalyst can be prepared from [IrCl(cod)]₂, pyridine, NH₄PF₆ and tricyclohexylphosphane² but it is also commercially available (Aldrich, Fluka). The complex is air-stable both in the solid state and in solution. It is soluble in CH₂Cl₂, CHCl₃ and acetone but is insoluble in water, alcohols, benzene, Et₂O and hexane. It can be recrystallized from CH₂Cl₂/Et₂O. The catalyst is stable in the presence of oxidizing functionalities, such as carbon-halogen bonds or O₂, and -CO₂R, -NHAc, -OSiR₃ or keto groups, but it is poisoned by -CO₂H, -CN, and -NH₂.

Abstracts

a) Hindered substituted double bond systems are difficult to hydrogenate. Catalyst 1 is a highly active catalyst for the hydrogenation of these olefins such that in CH₂Cl₂, even tetrasubstituted olefins are easily reduced at 0 °C. The table shows relative rates for the hydrogenation of 1 compared to those with Wilkinson’s catalyst, [RhHCl(PPh₃)],³.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Solvent</th>
<th>Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ir(cod)pyr(PCy₃)]PF₆</td>
<td>CH₂Cl₂</td>
<td>6400</td>
</tr>
<tr>
<td>[RhHCl(PPh₃)]</td>
<td>C₆H₆</td>
<td>9000</td>
</tr>
</tbody>
</table>

b) Two sites are available for the coordination of 1 with a bidentate substrate. The addition of H₂ on one face of a cyclic molecule can thus be directed by the presence of a hydroxyl group on that face. This has been shown independently by Crabtree⁴ and Stork.⁵ Stereochemical control can also be achieved by catalyst coordination to amide carbonyl groups.

c) Evans and Fu showed that amides effectively direct the [Ir(cod)(PCy₃)pyr]PF₆-catalyzed hydroboration of olefins with catecholborane.⁶ The directing ability of the amide moiety is also evident in acyclic systems.

References and Notes


Article Identifier: 1437-2096;E:2001,0,01,160,160,ftx,en;V02900ST.pdf