Semin Hear 2001; 22(4): 361-376
DOI: 10.1055/s-2001-19107
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Otoacoustic Emissions in Relation to Auditory Perception: Beyond the Pure-Tone Audiogram

Jacek Smurzynski1 , Frances P. Harris2 , Rudolf Probst1
  • 1Department of Otorhinolaryngology, University Hospital, Basel, Switzerland and
  • 2Department of Speech and Hearing Sciences, University of Arizona, Tucson, Arizona
Further Information

Publication History

Publication Date:
18 December 2001 (online)

ABSTRACT

Investigations of the relation of otoacoustic emissions (OAEs) and perception of auditory stimuli, other than the pure tones used in routine clinical audiometry, fall into two broad categories: (1) direct comparisons of OAE and perceptual measures that are intended to further our understanding of cochlear mechanisms and (2) explorations of the influence of more versus less active ears, as characterized by their OAEs, on psychoacoustic performance. Although both OAEs and perceptual measures derive, at least in part, from similar peripheral mechanisms, there are differences between them. It is likely that spontaneous OAEs (SOAEs) and/or strong evoked OAEs (EOAEs) influence auditory perception when measures are made at low levels, thus contributing to some of the variability reported in psychoacoustic studies. It is less likely that OAEs influence perception of complex signals or perceptual tasks involving signal levels greater than approximately 30 dB SPL.

REFERENCES

  • 1 Micheyl C, Collet L. Involvement of the olivocochlear bundle in the detection of tones in noise.  J Acoust Soc Am . 1996;  99 1604-1610
  • 2 Kemp D T. Otoacoustic emissions: distorted echoes of the cochlea's travelling wave. In: Berlin CI, ed. Otoacoustic Emissions: Basic Science and Clinical Applications San Diego, CA: Singular Publishing Group 1998: 1-59
  • 3 Elliott E. A ripple effect in the audiogram.  Nature . 1958;  181 1076
  • 4 Probst R. Otoacoustic emissions: an overview.  Adv Otorhinolaryngol . 1990;  44 1-91
  • 5 Pasanen E G, McFadden D. An automated procedure for identifying spontaneous otoacoustic emissions.  J Acoust Soc Am . 2000;  108 1105-1116
  • 6 Braun M. Frequency spacing of multiple spontaneous otoacoustic emissions shows relation to critical bands: a large-scale cumulative study.  Hear Res . 1997;  114 197-203
  • 7 von Dallmayr C. Spontane oto-akustische Emissionen: Statistik und Reaktion auf akustische Störtöne.  Acustica . 1985;  59 67-75
  • 8 Talmadge C L, Long G R, Murphy W J, Tubis A. New off-line method for detecting spontaneous otoacoustic emissions in human subjects.  Hear Res . 1993;  71 170-182
  • 9 Zwicker E. Otoacoustic emissions and cochlear travelling waves. In: Wilson JP, Kemp DT, eds. Cochlear Mechanisms: Structure, Function, and Models New York: Plenum 1989: 359-366
  • 10 Bright K E. Spontaneous otoacoustic emissions. In: Robinette MS, Glattke TJ, eds. Otoacoustic Emissions: Clinical Applications New York: Thieme 1997: 46-62
  • 11 Long G R, Tubis A. Investigations into the nature of the association between threshold microstructure and otoacoustic emissions.  Hear Res . 1988;  36 125-138
  • 12 Zwicker E, Schloth E. Interrelation of different oto-acoustic emissions.  J Acoust Soc Am . 1984;  75 1148-1154
  • 13 Cohen M F. Detection threshold microstructure and its effect on temporal integration data.  J Acoust Soc Am . 1982;  71 405-409
  • 14 Smurzynski J, Probst R. Effects of signal duration on threshold microstructure in ears with spontaneous otoacoustic emissions. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E, eds. Diversity in Auditory Mechanics Singapore: World Scientific 1997: 270-276
  • 15 Smurzynski J, Probst R. Intensity discrimination, temporal integration and gap detection by normally-hearing subjects with weak and strong otoacoustic emissions.  Audiology . 1999;  38 251-256
  • 16 Avan P, Wit H P, Guitton M, Mom T, Bonfils P. On the spectral periodicity of transient-evoked otoacoustic emissions from normal and damaged cochleas.  J Acoust Soc Am . 2000;  108 1117-1127
  • 17 Shera C A, Guinan J J. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.  J Acoust Soc Am . 1999;  105 782-798
  • 18 He N, Schmiedt R A. Fine structure of the 2f 1-f 2 acoustic distortion product: effects of primary level and frequency ratios.  J Acoust Soc Am . 1997;  101 3554-3565
  • 19 Talmadge C L, Tubis A, Long G R, Piskorski P. Modeling otoacoustic emission and hearing threshold fine structures.  J Acoust Soc Am . 1998;  104 1517-1543
  • 20 Lutman M E, Deeks J. Correspondence amonst microstructure patterns observed in otoacoustic emissions and Békésy audiometry.  Audiology . 1999;  38 263-266
  • 21 Mauermann M, Uppenkamp S, van Hengel W J P, Kollmeier B. Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1.  J Acoust Soc Am . 1999;  106 3473-3483
  • 22 He N, Schmiedt R A. Fine structure of the 2f 1-f 2 acoustic distortion product: changes with primary level.  J Acoust Soc Am . 1993;  94 2659-2669
  • 23 Mauermann M, Uppenkamp S, Kollmeier B. Periodizität und Pegelabhängigkeit der spektralen Feinstruktur von Verzerrungsprodukt-Emissionen.  Audiol Akust . 1997;  36 92-104
  • 24 He N, Dubno J R, Schmiedt R A. Frequency fine structures of auditory thresholds and distortion product emissions: is there a correlation?.  Assoc Res Otolaryngol Abstr . 1994;  17 48
  • 25 Penner M J. Spontaneous otoacoustic emissions and tinnitus. In: Tyler RS, ed. Tinnitus Handbook San Diego, CA: Singular Publishing Group 2000: 203-220
  • 26 Long G. Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones.  Hear Res . 1998;  119 49-60
  • 27 Kemp D T. The evoked cochlear mechanical response and the auditory microstructure-evidence for a new element in cochlear mechanics.  Scand Audiol Suppl . 1979;  9 35-47
  • 28 Long G R. Does intersubject variance in psychoacoustic research stem from cochlear fine structure?. In: Breebaart DJ, Houtsma AJM, Kohlrausch A, Prijs VF, Schoonhoven R, eds. Physiological and Psychophysical Bases of Auditory Function. Maastricht, The Netherlands: Shaker Publishing BV; 2001: 397-402
  • 29 Zwicker E. Spontaneous oto-acoustic emissions, threshold in quiet, and just noticeable amplitude modulation at low levels. In: Moore BCJ, Patterson RD, eds. Auditory Frequency Selectivity London: Plenum 1986: 49-59
  • 30 Long G R. Perceptual consequences of otoacoustic emissions. In: Schick A, ed. Contributions to Psychological Acoustics: Results of the Sixth Oldenburg Symposium on Psychological Acoustics Oldenburg, Germany: University of Oldenburg Press 1993: 59-79
  • 31 Long G R. The microstructure of quiet and masked thresholds.  Hear Res . 1984;  15 73-87
  • 32 Norena A, Micheyl C, Durrant J D, Chéry-Croze S, Collet L. Is there a neural plasticity related to spontaneous otoacoustic emissions in humans?.  Assoc Res Otolaryngol Abstr 24;. 2001;  11
  • 33 Köhler W, Fritze W. Pitch is influenced by spontaneous otoacoustic emissions.  Acta Otolaryngol . 1994;  114 110-112
  • 34 Zwicker E, Harris F P. Psychoacoustical and ear canal cancellation of (2f 1-f 2)-distortion products.  J Acoust Soc Am . 1990;  87 2583-2591
  • 35 Furst M, Rabinowitz W M, Zurek P M. Ear canal acoustic distortion at 2f 1-f 2 from human ears: relation to other emissions and perceived combination tones.  J Acoust Soc Am . 1988;  84 215-221
  • 36 Brown A M, Harris F P, Beveridge H A. Two sources of acoustic distortion products from the human cochlea.  J Acoust Soc Am . 1996;  100 3260-3267
  • 37 Brown A M, Gaskill S A, Carlyon R P, Williams D M. Acoustic distortion as a measure of frequency selectivity: relation to psychophysical equivalent rectangular bandwidth.  J Acoust Soc Am . 1993;  93 3291-3307
  • 38 Leeuw A R, Dreschler W A. The relation between otoacoustic emissions and the broadening of the auditory filter for higher levels.  Hear Res . 1998;  126 1-10
  • 39 Neumann J, Uppenkamp S, Kollmeier B. Relations between notched-noise suppressed TEOAE and the psychoacoustical critical bandwidth.  J Acoust Soc Am . 1997;  101 2778-2788
  • 40 McFadden D, Mishra R. On the relation between hearing sensitivity and otoacoustic emissions.  Hear Res . 1993;  71 208-213
  • 41 Kapadia S, Lutman M E. Reduced `audiogram ripple' in normally-hearing subjects with weak otoacoustic emissions.  Audiology . 1999;  38 257-261
  • 42 Probst R, Harris F P. Effect of otoacoustic emissions on just-noticeable differences for intensity in normally hearing subjects.  J Acoust Soc Am . 1996;  100 504-510
  • 43 Micheyl C, Collet L. Interrelations between psychoacoustical tuning curves and spontaneous and evoked otoacoustic emissions.  Scand Audiol . 1994;  23 171-178
  • 44 Smurzynski J, Probst R. Detection of partially filled and empty temporal gaps in low-pass noise in subjects with and without spontaneous otoacoustic emissions. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T, eds. Recent Developments in Auditory Mechanics Singapore: World Scientific 2000: 463-469
  • 45 Quaranta A, Portalatini P, Henderson D. Temporary and permanent threshold shift: an overview.  Scand Audiol . 1998 (Suppl 48);  27 75-86
  • 46 Cazals Y. Auditory sensori-neural alterations induced by salicylate.  Prog Neurobiol . 2000;  62 583-631
  • 47 Whitehead M L. Slow variations of the amplitude and frequency of spontaneous otoacoustic emissions.  Hear Res . 1991;  53 269-280
  • 48 Smurzynski J, Probst R. The influence of disappearing and reappearing spontaneous otoacoustic emissions on one subject's threshold microstructure.  Hear Res . 1998;  115 197-205
    >