Exp Clin Endocrinol Diabetes 2001; Vol. 109(4): 217-226
DOI: 10.1055/s-2001-15109
Articles

© Johann Ambrosius Barth

TGFβ1 and TGFβ2 mRNA and protein expression in human bone samples

S. Hering 1 , F. Isken 4 , C. Knabbe 5 , J. Janott 1 , C. Jost 1 , A. Pommer 3 , G. Muhr 2 , H. Schatz 1 , A. F. H. Pfeiffer 4
  • 1 Department of Internal Medicine and
  • 2 Department of Surgery, BG-Kliniken “Bergmannsheil”, Ruhr-University, Bochum, Germany
  • 3 Department of Surgery, Kliniken Barmen, Wuppertal, Germany
  • 4 Department of Internal Medicine, Klinikum Benjamin Franklin, Free-University of Berlin, Germany
  • 5 Department of Clinical Chemistry, Robert-Bosch-Krankenhaus, Stuttgart, Germany
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Summary:

Transforming growth factor beta is one of the most abundant growth factors stored in bone. It is known as a potent regulator of osteoblast proliferation and differentiation as well as of production extracellular matrix. We established a highly specific RT-PCR in combination with HPLC for detection and quantification of TGFβ1 and TGFβ2 mRNA expression in 89 human bone samples. Levels of TGFβ1 protein ranged between 27 and 580 ng/g bone (mean 188 ± 15 ng/g; n = 75) and for TGFβ2 between 7.2 and 35 ng/g bone (mean 14.3 ± 2.1 ng/g; n = 57). TGFβ1 and TGFβ2 protein concentrations and TGFβ isoform mRNA expression in bone were not significantly different between the sexes. TGFβ isoform mRNA expression as well as protein content in bone declined age dependently. TGFβ1 and TGFβ2 protein and mRNA expression were different in bone samples from different sites of the skeleton indicating in part the regulation by mechanical stimuli. In contrast to TGFβ1, TGFβ2 mRNA expression was significantly enhanced in osteoarthritic bone compared to unaffected bone. These data are in concordance to previous results concerning the expression of TGFβ3 in bone. In conclusion, the data suggest distinct patterns' of expression of the TGFβ isoforms under physiological and pathological conditions in bone.

References

  • 1 Batge B, Feydt A, Gebken J, Klein H, Notbohm H, Muller P K, Brinckmann J. Age-related differences in the expression of receptors of TGFβ in human osteoblast-like cells in vitro.  Exp Clin Endocrinol Diabetes. 108 311-315 2000; 
  • 2 Bikle D D, Halloran B P. The response of bone to unloading.  J Bone Miner Metab. 17 233-244 1999; 
  • 3 Birch M A, Ginty A F, Walsh C A, Fraser W D, Gallagher J A, Bilbe G. PCR detection of cytokines in normal human and pagetic osteoblast-like cells.  J Bone Miner Res. 8 1155-1162 1993; 
  • 4 Bismar H, Diel I, Ziegler R, Pfeilschifter J. Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement.  J Clin Endocrinol Metab. 80 3351-3355 1995; 
  • 5 Blum W F, Ranke M B, Bierich J R. A specific radioimmunoassay for insulin-like growth factor II: the interference of IGF binding proteins can be blocked by excess IGF-I.  Acta Endocrinol. 118 374-380 1988; 
  • 6 Burt D W, Paton I R, Dey B R. Comparative analysis of human and chicken transforming growth factor-beta 2 and -beta 3 promoters.  J Mol Endocrinol. 7 175-183 1991; 
  • 7 Cheifetz S, Weatherbee J A, Tsang M L, Anderson J K, Mole J E, Lucas R, Massague J. The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors.  Cell. 48 409-415 1987; 
  • 8 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.  Anal Biochem. 162 156-159 1987; 
  • 9 Dequeker J, Mohan S, Finkelman R D, Aerssens J, Baylink D J. Generalized osteoarthritis associated with increased insulin-like growth factor types I and II and transforming growth factor beta in cortical bone from the iliac crest. Possible mechanism of increased bone density and protection against osteoporosis.  Arthritis Rheum. 36 1702 1993; 
  • 10 Derynck R, Jarrett J A, Chen E Y, Eaton D H, Bell J R, Assoian R K, Roberts A B, Sporn M B, Goeddel D V. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells.  Nature. 316 701-705 1985; 
  • 11 Harris S A, Zhang M, Kidder L S, Evans G L, Spelsberg T C, Turner R T. Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression.  Bone. 26 325-331 2000; 
  • 12 Hattersley G, Chambers T J. Effects of transforming growth factor beta 1 on the regulation of osteoclastic development and function.  J Bone Miner Res. 6 165-172 1991; 
  • 13 Hering S, Isken F, Janott J, Jost J, Pommer A, Muhr G, Schatz H, Pfeiffer A FH. Analysis of TGFβ3 gene expression and protein levels in human bone and serum.  Exper Clin Endocrinol Diabetes. 109 107-115 2001; 
  • 14 Jarvinen T L, Kannus P, Sievanen H, Jolma P, Heinonen A, Jarvinen M. Randomized controlled study of effects of sudden impact loading on rat femur.  J Bone Miner Res. 13 1475-1482 1998; 
  • 15 Katz E D, Haff L A, Eksteen R. Rapid separation, quantitation and purification of products of polymerase chain reaction by liquid chromatography.  J Chromatogr. 512 433-444 1990; 
  • 16 Kingsley-Kallesen M L, Johnson L, Scholtz B, Kelly D, Rizzino A. Transcriptional regulation of the TGF-beta 2 gene in choriocarcinoma cells and breast carcinoma cells: differential utilization of Cis-regulatory elements.  In Vitro Cell Dev Biol Anim. 33 294-301 1997; 
  • 17 Kingsley-Kallesen M L, Kelly D, Rizzino A. Transcriptional regulation of the transforming growth factor-beta 2 promoter by cAMP-responsive element-binding protein (CREB) and activating transcription factor-1 (ATF-1) is modulated by protein kinases and the coactivators p300 and CREB-binding protein.  J Biol Chem. 274 34020-34028 1999; 
  • 18 Klein-Nulend J, Roelofsen J, Sterck J G, Semeins C M, Burger E H. Mechanical loading stimulates the release of transforming growth factor-beta activity by cultured mouse calvariae and periosteal cells.  J Cell Physiol. 163 115-119 1995; 
  • 19 Knabbe C, Zugmaier G, Schmahl M, Dietel M, Lippman M E, Dickson R B. Induction of transforming growth factor beta by the antiestrogens droloxifene, tamoxifen, and toremifene in MCF-7 cells.  Am J Clin Oncol. 14 S15-20 1991; 
  • 20 Koike K, Urata Y, Koike M. Molecular cloning and characterization of human pyruvate dehydrogenase beta subunit gene.  Proc Natl Acad Sci USA. 87 5594-5597 1990; 
  • 21 Kopp A, Jonat W, Schmahl M, Knabbe C. Transforming growth factor beta 2 (TGF-beta 2) levels in plasma of patients with metastatic breast cancer treated with tamoxifen.  Cancer Res. 55 4512-4515 1995; 
  • 22 MacKay K, Kondaiah P, Danielpour D, Austin H A, Brown P D. Expression of transforming growth factor-beta 1 and beta 2 in rat glomeruli.  Kidney Int. 38 1095-1100 1990; 
  • 23 Madisen L, Webb N R, Rose T M, Marquardt H, Ikeda T, Twardzik D, Seyedin S, Purchio A F. Transforming growth factor-beta 2: cDNA cloning and sequence analysis.  DNA. 7 1-8 1988; 
  • 24 Massague J. The transforming growth factor-beta family.  Annu Rev Cell Biol. 6 597-641 1990; 
  • 25 Millan F A, Denhez F, Kondaiah P, Akhurst R J. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo.  Development. 111 131-143 1991; 
  • 26 Mundy G R. The effects of TGF-beta on bone.  Ciba Found Symp. 157 137-143 1991; 
  • 27 Mundy G R, Bonewald L F. Role of TGF beta in bone remodeling.  Ann N Y Acad Sci. 593 91-97 1990; 
  • 28 Nicolas V, Prewett A, Bettica P, Mohan S, Finkelman R D, Baylink D J, Farley J R. Age-related decreases in insulin-like growth factor-I and transforming growth factor-beta in femoral cortical bone from both men and women: implications for bone loss with aging .  J Clin Endocrinol Metab. 78 1011-1016 1994; 
  • 29 Noma T, Glick A B, Geiser A G, O'Reilly M A, Miller J, Roberts A B, Sporn M B. Molecular cloning and structure of the human transforming growth factor-beta 2 gene promoter.  Growth Factors. 4 247-255 1991; 
  • 30 Offner F A, Feichtinger H, Stadlmann S, Obrist P, Marth C, Klingler P, Grage B, Schmahl M, Knabbe C. Transforming growth factor-beta synthesis by human peritoneal mesothelial cells. Induction by interleukin-1.  Am J Pathol. 148 1679-1688 1996; 
  • 31 O'Reilly M A, Geiser A G, Kim S J, Bruggeman L A, Luu A X, Roberts A B, Sporn M B. Identification of an activating transcription factor (ATF) binding site in the human transforming growth factor-beta 2 promoter.  J Biol Chem. 267 19938-19943 1992; 
  • 32 Oursler M J, Cortese C, Keeting P, Anderson M A, Bonde S K, Riggs B L, Spelsberg T C. Modulation of transforming growth factor-beta production in normal human osteoblast-like cells by 17 beta-estradiol and parathyroid hormone.  Endocrinology. 129 3313-3320 1991; 
  • 33 Parfitt .The physiological and clinical significance of bone histomrphometric data. Bone histomorphometry: techniques and interpretations Boca-Raton, CRC Press: 143-223 1983
  • 34 Pelton R W, Saxena B, Jones M, Moses H L, Gold L I. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development.  J Cell Biol. 115 1091-1105 1991; 
  • 35 Pfeiffer A, Middelberg-Bisping K, Drewes C, Schatz H. Elevated plasma levels of transforming growth factor-beta 1 in NIDDM.  Diabetes Care. 19 1113-1117 1996; 
  • 36 Pfeilschifter J, Chenu C, Bird A, Mundy G R, Roodman G D. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro.  J Bone Miner Res. 4 113-118 1989; 
  • 37 Pfeilschifter J, Diel I, Scheppach B, Bretz A, Krempien R, Erdmann J, Schmid G, Reske N, Bismar H, Seck T, Krempien B, Ziegler R. Concentration of transforming growth factor beta in human bone tissue: relationship to age, menopause, bone turnover, and bone volume.  J Bone Miner Res. 13 716-730 1998; 
  • 38 Pfeilschifter J, Scheidt-Nave C, Leidig-Bruckner G, Woitge H W, Blum W F, Wuster C, Haack D, Ziegler R. Relationship between circulating insulin-like growth factor components and sex hormones in a population-based sample of 50- to 80-year-old men and women.  J Clin Endocrinol Metab. 81 2534-2540 1996; 
  • 39 Pfeilschifter J, Seyedin S M, Mundy G R. Transforming growth factor beta inhibits bone resorption in fetal rat long bone cultures.  J Clin Invest. 82 680-685 1988; 
  • 40 Podenphant U E. Regional variations in histomorphometric bone dynamics from the skeleton of an osteoporotic study.  Calcif Tissue Int. 40 184-188 1987; 
  • 41 Raab-Cullen D M, Akhter M P, Kimmel D B, Recker R R. Periosteal bone formation stimulated by externally induced bending strains.  J Bone Miner Res. 9 1143-1152 1994; 
  • 42 Riggs B L, Melton L. Evidence for two distinct syndromes of involutional osteoporosis.  Am J Med. 75 899-901 1983; 
  • 43 Roberts A B, McCune B K, Sporn M B. TGF-beta: regulation of extracellular matrix.  Kidney Int. 41 557-559 1992; 
  • 44 Scholtz B, Kelly D, Rizzino A. Cis-regulatory elements and transcription factors involved in the regulation of the transforming growth factor-beta 2 gene.  Mol Reprod Dev. 41 140-148 1995; 
  • 45 Shipley G D, Tucker R F, Moses H L. Type beta transforming growth factor/growth inhibitor stimulates entry of monolayer cultures of AKR-2B cells into S phase after a prolonged prereplicative interval.  Proc Natl Acad Sci USA. 82 4147-4151 1985; 
  • 46 Tanaka H, Barnes J, Liang C T. Effect of age on the expression of insulin-like growth factor-I, interleukin-6, and transforming growth factor-beta mRNAs in rat femurs following marrow ablation [published erratum appears in Bone 1996 Aug; 19(2):206].  Bone. 18 473-478 1996; 
  • 47 Tardif G, Pelletier J P, Dupuis M, Geng C, Cloutier J M, Martel-Pelletier J. Collagenase 3 production by human osteoarthritic chondrocytes in response to growth factors and cytokines is a function of the physiologic state of the cells.  Arthritis Rheum. 42 1147-1158 1999; 
  • 48 Westerlind K C, Turner R T. The skeletal effects of spaceflight in growing rats: tissue-specific alterations in mRNA levels for TGF-beta.  J Bone Miner Res. 10 843-848 1995; 
  • 49 Wu Y, Craig T A, Lutz W H, Kumar R. Identification of 1 alpha,25-dihydroxyvitamin D3 response elements in the human transforming growth factor beta 2 gene.  Biochemistry. 38 2654-2660 1999; 

Dr. med. Steffen Hering

BG-Kliniken “Bergmannsheil”

Ruhr-University of Bochum

Dept. of Internal Medicine

Bürkle de la Camp Platz 1

D-44789 Bochum

Germany

Phone: +49-(0)234-302-6400

Fax: +49-(0)234-302-6403

Email: steffen.hering@ruhr-uni-bochum.de

    >