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On the Source of Transfer of Stereochemical Information in Ligands for
Pd-Catalyzed AAA Reactions1
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Abstract: Examination of a series of ligands for a Pd-catalyzed
asymmetric allylic alkylation (AAA) suggests the importance of
buttressing effects for creating chiral space for high enantioselectiv-
ity.
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Recent work in these laboratories have demonstrated the
utility of ligands like 1 to generate Pd complexes for a
wide of asymmetric allylic alkylations (AAA).1,2 Given
that the coordination to Pd is via the phosphines which are
quite remote from the source of chirality, i.e. the diami-
nocyclohexane, the question of how the chiral scaffold
transmits stereochemical information to the reacting sub-
strate becomes a major issue. In our working model, the
ability of the chiral scaffold to influence the chiral space
organized around the palladium in terms of the conforma-
tions of the triarylphosphino moiety is responsible for the
molecular recognition.2 However, this model does not
suggest a mechanism for the transmission of the stereo-
chemical information. One thought involves a relay effect
via steric interactions between the chiral scaffold and the
benzoyl moiety that, in turn, influences the conformation-
al biases of the triarylphosphino moiety. Indeed, the high-
er selectivity of the amide versus ester seems to support
this suggestion.3 While the conformational biases of the
ester and amide for a trans or anti orientation are similar,
the shorter bond length of the amide brings the scaffold
and the linker closer and thereby enhances their steric in-
teractions. An additional factor considered the influence
of the dihedral angle on the bite angle f in the ligands 4.
Opening the dihedral angle should lead to also increasing
the bite angle f with a corresponding increase of interac-
tions with the triarylphosphino moieties and the allyl frag-
ments coordinated to Pd. Indeed, ligands like the
anthracenyl system 2 wherein the dihedral angle is quite
large did give excellent results that seemed to be superior
to the cyclohexyl system 1.3,4 Furthermore, the “inver-

tomer” ligand 3 also gave excellent enantioselectivity but
with the opposite sense of chirality.5 We, therefore, want-
ed to examine the role of the dihedral angle versus the
more direct steric interactions which we refer to as “but-
tressing” effects as represented in 5.

We chose the desymmetrization of meso-diesters or ure-
thanes, such as 6, as shown in eq. 1 as our test reaction
since it removes uncertainties introduced in reactions in-
volving the nucleophile in the enantiodiscriminating step.
The formation of oxazolidin-2-one 7 has also proven to be
useful for the synthesis of aminocyclopentitols as glycosi-
dase inhibitors.6

Our studies were initiated with the cyclopropane based
ligand 8 that was prepared from the known acid7 via the
acid chloride [(COCl)2, cat. DMF, CH2Cl2] and 2-
diphenylphosphinoaniline8 [C5H5N, CH2Cl2, r.t]. in 69%
yield. Subjecting the bis-urethane 6 to a catalyst generated
in situ by mixing p-allylpalladium chloride dimer (9) and
ligand 8 in THF at r.t gave an excellent yield of 7 (92%),
but the ee was only 38% (see Table 1, entry 2). This mod-
erate ee is in striking contrast to the excellent ee using
ligand 3 (Table 1, entry 1).5 To ascertain the role of ring
size, we also examined the four- (i.e. 10)9 and six- (i.e. 11)
membered ring systems with similarly low ee’s (Table 1,
entries 3 and 4). Eq 2 illustrates the synthesis of ligand 10.
The cis-divinylcyclobutane was easily separated from the
trans due to the facility of its thermal rearrangement.The
direct oxidation of trans-1,2-divinylcyclobutane to the di-
carboxylic acid, with KMnO4, proceeded in low yield;
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however, this convenient sequence can undoubtedly be
improved. Thus, the differences between ligand 3 and
ligands 8, 10, and 11 presumably do not derive from dihe-
dral angles but rather from the steric bulk of the bicyclic
framework of ligand 3.

Table 1 Enantioselectivity of Oxazolidin-2-one Synthesis Using
Invertomer Ligands (eq. 1)a

aIn all cases, reactions were performed as shown in eq. 1 except if
noted otherwise.
bTaken from ref. 5.
c(dba)3•Pd2CHCl2 used in lieu of 9.
dIsolated yields.
eDetermined by chiral HPLC using a Chiralpak AD column.

To dissect the contributions of the individual structural
components present in ligand 3 for the asymmetric induc-
tion, ligands consisting of the core bicyclic framework,
i.e. 12-14, were prepared from the corresponding diacids
which are known enantiomerically pure in the first two
cases.10,11 Since these ligands are of the opposite enantio-
meric series compared to ligands 8 and 11, the major
enantiomer observed was the opposite as noted in the er
values. In the cases of ligands 12-14, a significant increase
in ee occurred compared to the monocyclic system (Table
1, entries 5, 6 and 7 versus 2, 3, and 4), but no variation
among the various bicyclic systems was observed. Sur-
prisingly, saturating the double bond to give ligands 15
and 16 led to reactions with reduced ee (Table 1, entries 8
and 9). Interestingly, the ee using the bicyclo[2.2.2] ligand

16 was higher than that using the bicyclo[2.2.1] system. In
this series, it is clear that the bulk of the dihydroanthrace-
nyl system plays a major role in propagating the chirality
over the long distances.

For comparison, we also examined the “normal” ligands
in the bicyclic series, i.e. 17-21. The diamine precursors
were obtained in 65-78% overall yield from the corre-
sponding dicarboxylic acids by a standard Curtius
sequence12 whereby the mixed anhydride [ClCO2C2H5,
(C2H5)3N, CH3COCH3] was converted to the acyl azide
[NaN3, CH3COCH3, H2O] followed by heating in toluene
and acid hydrolysis. Table 2 summarizes the results. As
expected,5 the normal series possessing the same absolute
configuration as the invertomer series gives the products
of opposite configuration, i.e. the S-enantiomer dominates
with 17-21 but the R-enantiomer dominates with 12-16.

Clearly, there is a major difference in the manner in which
the stereochemical information is propagated from the
chiral scaffold to the chiral space. In this case, there is a
clear trend of increasing ee in going from the [2.2.1] to
[2.2.2] to [2.2.3] skeleta in both the unsaturated series
(Table 2, entries 2-4) and saturated series (Table 2, entries
5 and 6). Furthermore, the additional steric bulk present in
ligand 2 (Table 2, entry 1) does not increase the enantiose-
lectivity compared to the bare [2.2.2] skeleton (Table 2,
entries 3 and 6); in fact, there is the opposite effect with
the ee being higher in the cases of ligands 18, 19 and 21.

Figure 1 shows the results of molecular modeling and fo-
cusing on the proximity of the binding domain to the bi-
cyclic skeleton. The observed trends in ee do not follow
the dihedral angles. On the other hand, using the angle c
as a measure of the degree of the buttressing effect (the
larger the angle, the greater the effect), there does appear
to be a correlation. Thus, 19 gave the best ee and had the
largest angle. Furthermore, 2, 18 and 21 all had similar re-
sults with 18, having the largest “buttress” angle, showing
a marginally higher ee.
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Table 2 Enantioselectivity of Oxazolidin-2-one Synthesis Using
Normal Ligands (eq. 1)a

aIn all cases, reactions were performed as shown in eq. 1 except if
noted otherwise.
bTaken from ref. 3a.

Clearly, no single factor can explain the complex phe-
nomenon involved in transferring stereochemical infor-
mation over large distances in these ligands. Furthermore,
the factors that are important in the normal series appear
to be quite different than those mainly influencing the in-
vertomer series. In the normal series, buttressing between
the diphenylphosphinobenzoyl moiety and the chiral scaf-
fold does appear to affect directly the ee and presumably
the nature of the chiral pocket. Designing ligands to en-
hance this buttressing interaction then may create the next
generation of chiral ligands for AAA reactions.
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Figure 1 MM2 Calculations for bicyclic normal ligands
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