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Abstract: The synthesis of titanium cyclopentenediolates by the
double carbonylation of titanacyclobutane complexes is reported, a
process known as the Bercaw carbonylation. The reaction is general
for a range of titanacyclobutanes prepared by free radical alkylation
of allyltitanium(III) precursors. Titanacyclobutane formation and
carbonylation can be conducted in one pot without the isolation of
sensitive intermediates. Subsequent conversion to lithium cyclo-
pentenediolates and cyclopentane-1,2-diones provides access to a
range of synthetically valuable organic products.
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Radical alkylation of permethyltitanocene h3-allyl and re-
lated complexes provides substituted titanacyclobutane
complexes by highly regioselective addition to the allyl
central carbon.3 To realize the synthetic potential of this
general process, the organic chemistry of the
titanacyclobutane structural class must be further devel-
oped. One of the most interesting reactivity patterns al-
ready established for early transition metal dialkyl
complexes is the transformation to metalloenediolates by
reductive double carbonylation: the Bercaw reaction.4

This reaction has been previously used to convert titani-
um, zirconium, and hafnium metallacyclobutane com-
plexes to the corresponding metalloenediolates or, after
acid hydrolysis, to organic 2-hydroxycyclopentanones.5 

Here we report that the Bercaw carbonylation reaction is
general for a range of 3-substituted bis(pentamethylcyclo-
pentadienyl)titanacyclobutane complexes, leading to the
formation of the corresponding titanium cyclopentene-
diolate complexes cleanly and in high yield. The ene-
diolates can be converted in high yield to lithium
cyclopentenediolates by exchange with alkyllithium re-
agents or oxidized to cyclopentane-1,2-diones by an unex-
pected triphosgene-induced decomplexation, both
unprecedented reaction processes with considerable syn-
thetic potential. 

With the exception of unsubstituted complex 1f,6 the ti-
tanacyclobutane complexes 1 used in this investigation
were prepared by the samarium(II)-mediated radical alky-
lation of bis(pentamethylcyclopentadienyl)titanium(h3-
allyl).3a,7 More recently, we have reported that titanacy-
clobutane complexes 1 can be prepared more convenient-

ly and in higher yields using a one-pot procedure starting
directly with Cp*2TiCl8 (Equation).3e This allylation/alky-
lation protocol avoids the isolation of allyltitanium(III) in-
termediates and minimizes manipulation of air- and
water-sensitive materials. 

The crude titanacyclobutane complexes 1 thus obtained
can be carbonylated directly without further purification. 

Equation

The carbonylation of titanacyclobutane complexes 1a-f
proceeds in pentane at -78 °C under carbon monoxide
(60 psig) to yield titanium cyclopentenediolate complexes
2a-f as the exclusive reaction products (Table).9 For opti-
mal yields, the reaction mixture is maintained at low tem-
perature for 0.5 h prior to warming to room temperature.11

The cyclopentenediolate complexes are isolated as non-
crystalline powders after precipitation from the reaction
mixture upon concentration and cooling to -35 °C. Com-
plexes 2a-f have been completely characterized and show
characteristic infrared absorptions at  1430-1451 cm-1

(nc=c) and 13C NMR resonances at d 147-148 (C6D6) for
the olefinic carbons, fully consistent with previously re-
ported examples of this structural class.4,12

Protolytic demetallation of bis(cyclopentadienyl)titanium
cyclopentenediolate complexes has been previously re-
ported.5b,c,12a For the permethyltitanocene template, proto-
nolysis and aqueous acid hydrolysis both proved
problematic. Under anhydrous conditions, the reaction of
cyclopentenediolate 2a with gaseous HCl in pentane re-
turns a very low yield of 2-hydroxy-4-isopropylcyclopen-
tanone as a single (presumably trans) diastereomer.13 A
moderate improvement in yield is obtained by using triflic
acid: the reaction of enediolate complex 2d in ether at
0 °C returns 2-hydroxy-4-(1-phenylethyl)cyclopentanone
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3 in 43% yield; the metal is recovered in high yield as the
dicationic bis(aquo)permethyltitanocene 414 (Scheme 1).
As anticipated, ketoalcohol 3 is formed as the expected
mixture of two diastereomers after purification by prepar-
ative TLC.15

Scheme 1

Demetallation by acetylation is similarly inefficient, re-
turning the a-acetoxycyclopentanone 516 in poor yield af-
ter treatment with acetyl chloride/pyridine (Scheme 1).

Two alternative demetallation pathways have been devel-
oped to address these deficiencies. Transmetallation to
lithium is obtained upon treatment of cyclopentendiolate
complexes 2 with two equivalents of methyl lithium at
room temperature. As illustrated for complex 2a, the reac-
tion leads to the formation of Cp*2TiMe2

17 and the corre-
sponding lithium enediolate 6, both isolable in high yields
(Scheme 2).18 The organic chemistry of lithium ene-
diolates and related acyloin condensation intermediates
has been extensively developed, connecting this titanium-
mediated manifold to a range of downstream transforma-
tions, including simple quenching to a-ketols.19,20

Scheme 2

The conversion of titanocene enediolate complexes to or-
ganic cyclic carbonates by treatment with phosgene has
been reported,12a a particularly unattractive option for fur-
ther development. To circumvent the problem of phos-
gene toxicity, the use of the crystalline phosgene
surrogate, bis(trichloromethyl)carbonate (triphosgene),21

was investigated for the demetallation of permethylti-
tanocene enediolate complexes. Triphosgene, however,
unexpectedly mediates a novel oxidative cleavage reac-
tion, converting the enediolates cleanly to 4-substituted
cyclopentane-1,2-diones 7, which are isolated as the enol
tautomers (Scheme 2).22 The organometallic fragment is
returned largely as Cp*2TiCl2, although the mechanism of
this transformation has yet to be investigated. Enolic cy-
clopentane-1,2-diones are well-precedented;23 both 7a
and 7b exhibit spectroscopic properties fully consistent
with the assigned structures.22 

In combination with the alkylative titanacyclobutane for-
mation, the double carbonylation of titanacyclobutane
complexes thus provides a general method for the prepa-
ration of functionalized cyclopentane compounds at either
the acyloin or a-diketone oxidation state. Extension of this
process to the synthesis of more highly substituted cyclo-
pentenediolates requires further development of titanium
templates that can accommodate the radical alkylation of
substituted allyl ligands.3c,d Finally, we note that the de-
velopment of additional pathways for converting substi-
tuted titanacyclobutane complexes to synthetically
valuable organic products is also under investigation.
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Table Carbonylation of Titanacyclobutane Complexes to Give Ti-
tanium Cyclopentenediolatesa

a Reaction conditions: 60 psig CO, pentane, 2h, -78 °C ® RT; for a
more detailed experimental procedure, see reference 9.
bIsolated yields after purification.
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