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Abstract: An efficient total synthesis of (+)-salicylihalamide (1) is
described. The synthetic strategy features a highly E-selective ring-
closing metathesis to construct the 12-membered salicylihalamide
A macrocycle and a practical method for installation of the labile
ene-hepta-(Z,Z)-dienamide side chain, which relies on a Curtius re-
arrangement to forge the C18-N bond with subsequent N-acylation.
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In 1997 Boyd and co-workers1 reported the isolation and
structural elucidation of salicylihalamides A and B, novel
secondary metabolites produced by a marine sponge of
the genus Haliclona. Since their discovery, a number of
structurally similar bioactive metabolites have been iso-
lated and characterized, including the apicularens,2 lo-
batamides,3 and oximidines.4 Each of these structures
possesses a medium-sized macrolide ring engendering a
salicylate moiety and a dienylenamide sidechain. Salicy-
lihalamide A displayed potent cytotoxicity when screened
against the NCI 60-cell human tumor line assay, with a
mean panel GI50 value of 15 nM.1 Of particular import,
however, the mean-graph profiles for the salicylihala-
mides obtained from COMPARE pattern-recognition
analysis5 suggested a unique mode of action apart from
known antitumor compounds within the NCI database.
Thus, owing to the unique, potent cytotoxicities of the sal-
icylihalamides, as well as their scarcity and their novel
structural features, particularly the highly unsaturated
enamide sidechain, a strong impetus for total synthesis
presented itself.

Figure

Recently De Brabander and co-workers6 reported the first,
and to date only, total synthesis of (+)-salicylihalamide A
(1); this achievement resulted in reassignment of the abso-
lute configuration as 12S, 13R, 15S. A number of other
groups also have reported synthetic efforts towards salicy-
lihalamides.7,8 Herein we disclose our first generation,
stereocontrolled total synthesis of the non-naturally-oc-
curring enantiomer, (+)-salicylihalamide A (1).

We reasoned that the sensitive enamide sidechain would
best be installed at a late stage of the synthesis via N-acy-
lation of advanced enecarbamate 3 with (Z,Z)-dienyl chlo-
ride 4 (Scheme 1).9 Further analysis of 3 suggested a ring-
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closing metathesis (RCM)10 on triene 5 would serve both
to install the C(9,10) double bond and close the 12-mem-
bered macrolide. At the outset of this synthetic venture
control of the E-olefinic configuration could not be as-
sured (vide infra). Ester 5, in turn, would be available after
Mitsunobu union11 of secondary alcohol 7 with the sali-
cylic acid derivative 6.

The synthesis of 6 began with conversion of known amide
812 (available in two steps from methylsalicylic acid chlo-
ride) to iodide 913 (Scheme 2). Carboxylic acid 613 was
then obtained via exposure of the iodolactone 9 to zinc in
acetic acid.14

Scheme 2 (a) I2, THF/H2O, rt, 65%; (b) Zn, HOAc, 90 °C, 73%

Our approach to the required coupling partner (–)-7 is pre-
sented in Scheme 3. The anti relative stereochemistry at
C(12,13) was set via Roush crotylboration16 of known al-
dehyde (–)-1015 to furnish (–)-11;13 the diastereomeric ex-
cess was 90%. Protection of (–)-11 as the tert-
butyldimethylsilyl ether, followed by a 3-step homologa-
tion involving hydroboration,17 Swern oxidation18 and
Wittig methylenation19 then furnished olefin (–)-13.13 The
1,2 diol was next revealed by exposure of diethylketal
(–)-13 to aqueous trifluoroacetic acid;20 application of the
Kishi epoxide protocol21 led to (–)-1413 in 73% yield for
the two steps. The future C(17) and C(18) enamide car-
bons were then introduced by treatment of (–)-14 with the
lithium anion of methyl propiolate promoted by Lewis
acid (BF3

.OEt2)
22 to furnish alkynoate (–)-15.13 Arrival at

the p-methoxybenzyl (PMB) ether coupling partner (–)-7
was achieved via protection of the secondary alcohol as
the methyl-thiomethyl (MTM) ether,23 LAH reduction to
the homo allylic alcohol followed by protection as the
PMB ether,24 and silver-mediated23 removal of the MTM
moiety.

Union of acid 6 and alcohol (–)-7 was achieved via the
Mistunobu protocol11 (Scheme 4) to provide the olefin
metathesis substrate (–)-5.13 To our delight treatment of a
dichloromethane solution of (–)-5 (0.008 M) with the
Grubbs catalyst [(Cy3P)2Cl2Ru=CHPh; (10 mol%)] fur-
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nished the salicylihalamide macrolide (+)-1613 as an ap-
proximate 10:1 mixture of double bond isomers favoring
the desired E-isomer.25 Presumably this stereochemical
outcome derives from a combination of the reversible na-
ture of the ring-closing metathesis process26 and the ther-
modynamic stability of the E-olefinic configuration in the
salicylihalamide macrocycle. Similar selectivity in a ring-
closing metathesis was observed by De Brabander and  A.
Fürstner in their total syntheses of salicylihalamide A.6,7

The sequence leading to installation of the enamide side
chain began with a two-step conversion of the protected
primary allylic alcohol (+)-16 to the corresponding enal
(DDQ then Dess Martin periodinane27). Cleavage of the
anisole methyl ether with boron tribromide28 provided
phenol (+)-17.13 Subsequent oxidation of the enal to the
carboxylic acid, followed by silylation of both the C(3)
hydroxyl and acid moieties and base-mediated
hydrolysis29 of the TBS ester furnished carboxylic acid
(–)-18.13

In anticipation of the N-acylation reaction to install the
salicylihalamide sidechain, we turned to the synthesis of
Z,Z-dienyl acid chloride 4 (Scheme 5). Ethyl lithium (pre-
pared by lithium-halogen exchange between t-BuLi and
ethyl iodide) was treated sequentially with CuBr•SMe2

complex (0.5 equivalent), acetylene (1.5 equivalents, in-
troduced as a measured volume of gas) at -40 °C, and af-
ter 20 min an additional 2.5 equivalents of acetylene at
-10 °C, as described by Taylor and co-workers30 for the
synthesis of the closely related Z,Z-nonadienoic acid. The
resulting Z,Z-dienylcuprate was then trapped with carbon
dioxide to furnish, after isolation, dienyl acid 1913 in 20%
yield as a single isomer. Treatment of the latter with ox-
alyl chloride in the presence of a catalytic amount of DMF
generated acid chloride 4.13

Scheme 5 (a) i. 0.5 eq. CuBr•SMe2, Et2O, –35 °C, ii. 1.5 eq. acetyl-
ene, –40 °C, iii. 2.5 eq. acetylene, –10 °C, iv. CO2, HMPA, (EtO)3P,
20%; (b) (COCl)2, cat. DMF, PhH, rt

With ample quantities of both 4 and (–)-18 available, the
stage was set for the crucial incorporation of the enamide
sidechain. Exploiting the original Overman protocol,31 se-
quential treatment of acid (–)-18 (Scheme 6) with N,N-di-
ethylisopropylamine and i-BuOCOCl in acetone,
followed by aqueous sodium azide secured the corre-
sponding acyl azide which upon heating at reflux for 15
min in toluene underwent a facile Curtius rearrangement.

Without isolation the intermediate isocyanate was imme-
diately trapped with 2-(trimethylsilyl)-ethanol to provide
enecarbamate (–)-313 in excellent overall yield for the
four-step sequence (86%).32 Exposure of (–)-3 to NaH-
MDS followed by acid chloride 4 then proceeded smooth-
ly to furnish (–)-20.13,33 This stepwise elaboration of the
salicylihalamide sidechain proved to be a high-yielding
protocol, and represents a practical method for incorpora-
tion of the sidechain of the salicylihalamide system. Final
conversion to (+)-salicylihalamide A was achieved upon
sequential removal of the Teoc and TBS protecting
groups, thereby completing a stereocontrolled total syn-
thesis of the non-naturally-occurring enantiomer of sali-
cylihalamide A (1).13 The spectroscopic data for synthetic
(+)-salicylihalamide A (1) (e.g., 1H NMR (500 MHz), 13C
NMR (125 MHz), IR, HRMS) were in complete agree-
ment with the published data for (–)-salicylihalamide A,
except of course for chiroptic properties.

Scheme 6 (a) i. DIPEA, i-BuOCOCl, acetone, rt, ii. NaN3, H2O, rt,
iii. toluene, reflux, iv. 2-(trimethylsilyl)-ethanol, 86%; (b) NaHMDS,
4, THF, 0 °C, 81%; (c) i. TBAF, THF, 0 °C, ii. HF•pyridine, pyridine/
THF, 40-60%
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4.62-4.78 (m, 1H), 4.49 (m, 1H), 4.16 (t, J = 8.2 Hz, 2H), 3.70 
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2H), 1.50-1.58 (m, 1H), 1.10 (s, 9H), 1.03 (s, 9H), 0.82-0.90 
(m, 5H), 0.28 (s, 6H), 0.16 (s, 3H), 0.11 (s, 3H), -0.11 (s, 9H); 
13C NMR (125 MHz, C6D6) d 167.9, 153.2, 153.0, 138.7, 
131.2, 129.6, 128.9, 128.8, 126.7, 123.3, 118.1, 104.0, 74.2, 
72.1, 63.0, 38.3, 38.1, 37.5, 36.2, 35.9, 26.0, 25.7, 18.3, 18.1, 
17.6, 1.1, -1.9, -4.2, -4.3, -4.6, -4.7; high resolution mass 
spectrum (ES, Na) m/z 726.4037 [(M+Na)+; calcd for 
C37H65NO6Si3Na: 726.4017].

(33) A solution of (–)-3 (4.2 mg, 0.006 mmol) in dry THF (1 mL) 
was treated with sodium bis(trimethylsilyl)amide (1.0 M in 
THF, 9 mL, 0.009 mmol) for 5 min at 0 °C. A solution of 4 (1.5 
mg, 0.012 mmol) in dry benzene (0.1 mL) was added. The 
resulting mixture was stirred at 0 °C for 10 min before being 
quenched with saturated NH4Cl (3 mL) and extracted with 
ether (2 × 15 mL). The combined organic phases were washed 
with brine, dried over MgSO4, filtered and concentrated. Flash 
chromatography (ethyl acetate/hexanes, 1:10) provided (-)-20 
(3.9 mg, 81%) as a colorless oil: [a] –20.0° (c 0.20, CH2Cl2); 
IR (neat): 3587 (m), 2926 (s), 2854 (s), 1728 (s), 1581 (m), 

1456 (m), 1382 (m), 1260 (s), 1066 (s), 969 (m), 860 (m), 803 
(s); 1H NMR (500 MHz, C6D6) d 7.54 (t, J = 11.5 Hz, 1H), 
6.90 (t, J = 7.9 Hz, 1H), 6.65-6.75 (m, 2H), 6.53-6.62 (m, 2H), 
6.45 (d, J = 11.5 Hz, 1H), 5.89 (dt, J = 14.1, 7.4 Hz, 1H), 5.54-
5.65 (m, 2H), 5.33-5.45 (m, 2H), 4.51-4.59 (m, 1H), 4.18 (t, 
J = 7.6 Hz, 2H), 3.69 (dd, J = 16.0, 8.1 Hz, 1H), 3.19 (dd, 
J = 16.0, 4.0 Hz, 1H), 2.53-2.69 (m, 2H), 2.10-2.19 (m, 1H), 
1.85-1.96 (m, 1H), 1.75-1.85 (m, 2H), 1.65-1.75 (m, 2H), 1.12 
(s, 9H), 1.02 (s, 9H), 0.92 (d, J = 6.6 Hz, 3H), 0.88-0.97 (m, 
2H), 0.73 (t, J = 7.5 Hz, 3H), 0.28 (s, 9H), 0.16 (s, 3H), 0.11 
(s, 3H), -0.10 (s, 6H); 13C NMR (125 MHz, C6D6) d 170.0, 
166.9, 153.6, 153.0, 142.3, 138.8, 137.0, 131.2, 129.2, 128.6, 
127.0, 124.9, 123.3, 121.1, 121.0, 118.0, 73.6, 72.1, 65.0, 
38.3, 38.0, 37,5, 37.0, 36.2, 26.0, 25.7, 20.6, 18.3, 18.1, 17.4, 
13.7, 1.1, -2.0, -4.2, -4.3, -4.6, -4.7; high resolution mass 
spectrum (ES, Na) m/z 834.4618 [(M+Na)+; calcd for 
C44H73NO7Si3Na: 834.4618].
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