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Abstract: Catalytic activation of C-H bonds adjacent to nitriles
supported by Wang resin can be performed with ruthenium dihy-
dride complex RuH2(PPh3)4 (1). Aldol and Michael reactions of the
solid-supported cyanoacetates proceed to give the corresponding
adducts in good yields under mild and neutral conditions. Four-
component reactions that include sequential aldol-Michael-Michael
reaction by C-H activation take place diastereoselectively. 
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Solid-phase organic synthesis is currently of considerable
interest in the context of combinatorial synthesis towards
construction of high-throughput processes, and it is a
widely used as a key technology for pharmaceutical re-
search.1 Particularly, solid-phase organic synthesis with
transition-metal complex catalysts is one of the most im-
portant chemistry for combinatorial synthesis; develop-
ment of new solid-phase reactions and transferring
solution-phase reactions to solid-phase have rapidly be-
come an area of intense research activity.2 Many reports
on transition-metal-catalyzed reactions for solid-phase
synthesis have been appeared;3 however, very little is
known about carbon-carbon bond forming reaction in-
duced by C-H bond activation with transition-metal com-
plexes.1,2 Carbon-carbon bond formations induced by C-
H activations will provide a new method for solid-phase
organic synthesis, because these reactions proceed highly
selectively under mild and neutral reaction conditions
without formation of inorganic salts. Therefore, the
amount of time, efforts, and cost for neutralization, pro-
tection/deprotection processes, and wash off salts can be
reduced.

As a line of our study on the development of C-H activa-
tion induced by a-heteroatom effect,4 we have found that
low-valent transition-metal complexes are effective cata-
lysts for the a-C-H activations of amines,5 nitriles,6,7 and
isonitriles.8 This concept led us to find the low-valent ru-
thenium-catalyzed a-C-H activation of nitriles on solid-
phase (equation 1). Ruthenium-coordinated nitriles teth-
ered to Wang resin undergo a-C-H activation to give cy-
anoalkyl intermediate. Capture of the intermediate with
electrophiles such as carbonyl compounds and electron-
deficient olefins provides aldol and Michael reactions of
polymer-supported nitriles under mild and neutral reac-

tion conditions. Herein, we wish to report the first exam-
ple of ruthenium-catalyzed C-H activation on solid-phase
and carbon-carbon bond formation of supported nitriles.

Ruthenium dihydride complex RuH2(PPh3)4 (1) has prov-
en to be a good catalyst for a-C-H activation of polymer-
supported nitriles. Aldol and Michael reactions of the cy-
anoacetate 2 supported on Wang resin9 can be performed
catalytically at room temperature under neutral conditions
(Scheme 1). The resin 2 was obtained by 

Scheme 1

esterification of the commercially available Wang resin
with cyanoacetic acid.10 The representative results of the
RuH2(PPh3)4-catalyzed reaction of supported nitriles with
carbonyl compounds are shown in Table.11 Upon treat-
ment of the resin 2 with benzaldehyde in the presence of
5 mol% of 1, aldol condensation proceeds to give the cor-
responding polymer-bound a,b-unsaturated nitrile 3 near-
ly quantitatively (entry 1).12 The yield of 3 was
determined by 1H HRMAS NMR based on the original
loading of cyanoacetic acid on the resin 2. Transesterifi-
cation of 3 with MeOH-DMF-Et3N gave methyl (E)-2-cy-
ano-3-phenylpropenoate in 95% isolated yield. Cleavage
of 3 with TFA in CH2Cl2 afforded 2-cyano-3-phenylpro-
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penoic acid in 79% yield. Condensation of 2 with aliphatic
carbonyl compounds such as butyraldehyde, 3-cyclohex-
ane-1-carboxaldehyde, and cyclohexanone gives the cor-
responding products efficiently (entries 2-4). Importantly,
the yields obtained are similar to those obtained from the
solution-phase reaction with 1 as previously reported,7a,b

indicating that penetration of catalyst 1 into the resin is al-
lowed well. Michael reaction of 2 with electron-deficient
olefins such as acrylonitrile occurred to give the corre-
sponding adducts (entry 5). Chemo- and stereoselectivity
were obtained, when crotonaldehyde and benzalacetone
are used7a,b (entries 6 and 7).

Table Ruthenium-Catalyzed Aldol and Michael Reactions of
Polymer-Supported Cyanoacetic Acidsa

aThe reaction was carried out according to the typical procedure.13

bConversion was determined by 1H HRMAS NMR analysis. cIsolated
yield after cleavage by transesterification (MeOH-DMF-Et3N) based
on the original loading of cyanoacetic acid on Wang resin. dIsolated
yield after acidic cleavage (TFA-CH2Cl2). 

eReaction conditions; THF
(5.0 mL), 60 °C, 30 h. f4.0 mmol of acrylonitrile was used.  gDiaste-
reomer ratio = 44/56.

Development of multicomponent reactions in which three
or more reactants combine in one step synthesis has been
an emerging area in pharmaceutical research that will dra-
matically reduce the time and cost for the preparation of
chemical libraries.1,2 The efficiency of the present reac-
tion is demonstrated by diastereoselective tandem Micha-
el addition reaction arising from chelation control of
ruthenium. In the presence of catalyst 1 (10 mol%), the re-
action of 2 with dimethyl methylidenemalonate and sub-
sequent addition of methyl vinyl ketone in CH2Cl2 at
60 °C occurred with high diastereoselectivity (equation
2).13 After cleavage with MeOH-DMF-Et3N, a mixture of
methyl (3R*, 4S*)-2,4-bis(methoxycarbonyl)-4-cyano-3-
methyl-7-oxooctanonate (4) and methyl (3S*, 4S*)-2,4-
bis(methoxycarbonyl)-4-cyano-3-methyl-7-oxoocta-non-
ate (5) was obtained in 65% isolated yield.14 It is notewor-
thy that extremely high diastereoselectivity (4/5 = 96/4)
was obtained because of chelation effect of ruthenium.

Equation 2

The efficiency of the present reaction is highlighted by di-
astereoselective four component reactions as shown in
Scheme 2. The ruthenium-catalyzed reaction of 2 with al-
dehydes and subsequent 
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Michael addition of carbon pronucleophiles to electron-
deficient olefins can be performed to give the correspond-
ing adducts diastereoselectively. Actually, the sequential
reaction of 2 with acetoaldehyde, dimethyl malonate, me-
thyl vinyl ketone gave 4 in 40% yield. The diastereoselec-
tivity is again very high (4/5 = 90/10). Formation of the
intermediates 6 and 7 were confirmed by 1H HRMAS
NMR experiments.

In summary, we found the first catalytic aldol and Michael
reactions of nitriles tethered to solid support initiated by
a-C-H activation of nitriles by using low-valent rutheni-
um complexes. These reactions will provide a wide scope
of carbon-carbon bond formation for solid-phase organic
synthesis.
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53.9 (CH(CO2CH3)2), 53.4 (C(CN)CO2CH3), 53.1 

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



994 H. Takaya, S.-I. Murahashi LETTER

Synlett 2001, SI, 991–994 ISSN 0936-5214 © Thieme Stuttgart · New York

(C(CN)CO2CH3), 52.73 (CH(CO2CH3)2), 52.72 
(CH(CO2CH3)2), 39.3 (CH2CH2COCH3), 39.0 (CHCH3), 30.2 
(CH2CH2COCH3), 29.7 (CH2CH2COCH3), 13.2 (CHCH3). 
Anal. Calcd for C15H21NO7: C, 55.04; H, 6.47; N, 4.28. Found: 
C, 54.90; H, 6.61; N, 4.22.
The relative stereochemical configuration of 4 was 
unequivocally determined by X-ray crystallographic analysis 
of crystals grown in diisopropyl ether as previously reported.7b 
Crystallographic data of 4 have been deposited at the 

Cambridge Crystallographic Data Base (deposition No. 
CCDC 156544). Copies of the data can be obtained free of 
charge on application to the CCDC, 12 Union Road, 
Cambridge CB2 1EZ, UK (fax:+44 1223 336 033;
E-mail: deposit@ccdc.cam.ac.uk).
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