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Abstract: Dirhodium(ll) catalysts with chiral carboxylate or car-
boxamidate effectively promote B-lactone formation from phenyl-
diazoacetates in high yield and with up to 63% ee.
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Dirhodium(l1) catalyzed intramolecular carbon-hydrogen
insertion reactions originating with diazocarbonyl com-
pounds have enjoyed wide popularity for the synthesis of
cycloakanones, lactones, and lactams.** They exhibit a
high preference for the formation of five-membered rings
and, in the absence of conformational restrictions,® reac-
tivity follows the order tertiary> secondary>> primary.°
There are few examples of insertion reactions favoring
ring sizes other than five in these reactions,"° even when
electronic influences would justify them.l® Recently,
Davies and coworkers have demonstrated that aryldiaz-
oacetates exhibit much higher levels of selectivity inC—H
insertion reactions.!* Based on this report and other indi-
cators of reactivity/selectivity,! we have searched for car-
bon-hydrogen insertion reactions that could provide the
formation of four-membered ring B-lactonesin reasonable
yields and with catalyst-directed enantiocontrol.

The first substrate tested was isopropy! phenyldiazoace-
tate, and we were surprised to find that the corresponding
B-lactone was virtually the sole product in reactions that
were catalyzed by rhodium acetate and by dirhodium(I1)
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compounds 4 and 5 (Table 1). Here, insertion into the
3 °C-H bond was favored over insertion into one of six
1 °C—H bonds despite the additional strain introduced by
formation of a four- rather than a five-membered ring.
Traces of 3, mainly the trans-disubstituted lactone, were
observed, but the overall difference in reactivity could be
estimated to be greater than 50:1. Products were identified
by spectroscopic analysis with reference to literature re-
ports of the same compounds.?

Table 1 Enantioselectivity in Carbon-Hydrogen Insertion Reac-
tions of Isopropyl Phenyldiazoacetate?

yield, %" ee, %
catalyst 2 (Ar=Ph) 2(Ar=Ph)
Rh,(OAc), 84 —
Rh,(S-MEAZ), (4a) 83 33
Rh,(S-IBAZ), (4b) 79 26
Rh,(S-BNAZ), (4¢) 66 30
Rh,(5-CHAZ),(4d) 85 35
Rh,(S-NEPAZ), (4e) 84 24
Rh,(S-DOSP), (5) 86 36
Rh,(S-DOSP), (5)° 78 41

@ Reactions were performed in refluxing CH,Cl,, unless specified
otherwise, using 1.0 mol% of catalyst. "Yield of product after separa-
tion of catalyst (up to 70% yield after chromatographic purification).
¢ Enantiomer separation and analyses were performed on a 25-cm,
4.6-mm (RR)-WHELK-O column using 5% EtOAc in hexanes (8.2
and 9.0 min for the individual enantiomers). ¢ Reaction performed in
refluxing pentane.

Reactions catalyzed by chiral dirhodium(I1) compounds,
gither the Rh,(SDOSP), catalyst of Davies* or our own
chiral azetidinone-ligated catalysts,**'* generally resulted
in B-lactone product in high yield but with only modest
enantioselectivities. The use of Rh,(SDOSP), produced
product with the highest% ee value, especialy when the
reaction was performed in pentane. Reactions with azeti-
dinone-ligated catalysts in pentane provided no obvious
advantages over reactions performed in CH,Cl,.

An attempt was made to determine the electronic influ-
ence of aryl substituents from aryldiazoacetates on enan-
tiocontrol. However, significantly lower product yields
were obtained with Ar = p-MeOCgH, — a substituent that,
based on published reports by Davies,***516 we thought
would lead to modest changes in enantioselectivity,% ee
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values were considerably lower than those reported in Ta-
ble 1 (33% ee with 5). However, with Ar =p-MeCgH,,
Rh,(SDOSP), gave the corresponding B-lactone in 77%
yield with 48% ee, but Rh,(SMEAZ), gave product in
lower yield (34%) and with lower enantioselectivity (27%
ee). The reason for this apparent discrepancy isasyet un-
resolved.

Diazo decomposition of cyclohexyl diazoacetate produc-
es the y-lactone products virtually exclusively.” The cor-
responding B-lactone, if formed at all, is a very minor
product. In contrast, diazo decomposition of cyclohexyl
phenyldiazoacetate 6 gives the corresponding p-lactone
product 717 with near exclusivity (Table 2), and the cata-
lyst had virtually no influence on regioselectivity. Here,
enantiosel ectivities were higher than those obtained with
isopropyl phenyldiazoacetate. Comparable results were
obtained with cis-4-methylcyclohexyl phenyl-diazoace-
tate[with Rh,(4SMEAZ),in CH,Cl,: 74%yield, 44% e€;
with Rh,(S DOSP), in pentane: 56% yield, 44% e€].
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Scheme 2

Table2 Enantioselectivity and Regioselectivity in Carbon-Hydro-
gen Insertion Reactions of Cyclohexyl Phenyldiazo-acetate?

ee, %°
catalyst yield, %" 7 7.8
Rh,(OAc), 55 — 98:2
Rh,(S-MEAZ),(4a) 67 50 98:2
Rh,(S-IBAZ),(4b) 66 51 97:3
Rh,(S-NEPAZ), (4c) 65 42 97:3
Rh,(S-DOSP), (5) 52 49 98:2
Rh,(S-DOSP), (5)° 69 63 98:2

2 Reactions were performed as described in Table 1. ® Product yield
after separation of catalyst (up to 53% yield of 7 after chromatogra-
phic purification). ¢ Enantiomer separation and analyses were perfor-
med on a25-cm, 4.6-mm (R,R)-WHELK-O column using 5% EtOAc
in hexanes (8.2 and 9.1 min for the individual enantiomers). “Deter-
mined by *H NMR of unique spectral regionsfor 7 (ref. 17) and 8 (ref.
18). ¢ Reaction performed in refluxing pentane.

In each C—H insertion reaction presented thus far the
chiral center that is generated is the original diazo-carbon
atom with aprobable transition state orientation that is de-
picted in 9. When reactions of 1, 6, and their analogs R
and R’ areidentical and, if insertion occurs as shownin 9,

the configuration of the B-lactone product would be R.
When R and R’ are not identical, one can expect a diaste-
reomeric product distribution that reflects the relative sta-
bilities of attached carbene/catalyst config-uration. Thisis
effectually represented in results from diazo decomposi-
tion of (9-(+)-2-octyl phenyldiazo-acetate (10) from
which two diastereomeric B-lactone products (11 and
12)* areformed in good yields (Table 3). y-L actone prod-
ucts were, at best, trace constituents of the reaction mix-
ture. As expected, changing catalyst configurations,
Rh,(4SMEAZ), and Rh,(4R-MEAZ),, resulted in mod-
est, but measurable, differences in diastereoselection in-
dicative of match/mismatch in catalyst-substrate
interactions. Surprisingly, the 11:12 ratio with Rhy(S
DOSP), was opposite to that with the 4S- azetidinone-li-
gated dirhodium(11) catalysts, and thereason for thisisun-
known.

Table 3 Diastereoselectivity in Carbon-Hydrogen Insertion Reac-
tions of (S)-(+)-2-Octyl Phenyldiazoacetate?

yield, % ee, %
catalyst 11 +12° 11:12°
Rh,(OAc), 91° 37:63
Rh,(S-MEAZ), (4a) 79 22:78
Rh,(R-MEAZ), (ent-4a) 60 53:47
Rh,(S-IBAZ), (4b) 68 36:64
Rh,(S-DOSP), (5) 56 69:31

3Reactionswere performed as described in Table 1. PYield after of re-
moval of catalyst. ¢ Determined by *H NMR analysis and confirmed
by GC on a SPB-5 column operated at 100 °C. ¢ Column chromato-
graphy on silica (2.5-10% EtOAc in hexanes) allowed isolation of 11
(28% yield) and 12 (57% yield) as separate products. € Reaction per-
formed in refluxing pentane.

Overall, dirhodium(ll) catalysts are surprisingly selective
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for p-lactone formation, affording these products in high
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yield, although with modest enantiocontrol. However,
when atertiary C—H bond is available that could result in
ay-lactone product, asisthe case with isobutyl phenyldia-
zoacetate (13), only the y-lactone product is observed (Ta-
ble 4). Here use of the chiral azetidinone- ligated catalysts
gave comparable% ee valuesfor theinsertion product (14)
to results from Rh,(SDOSP), in pentane. Clearly, the
presence of a tertiary C—H bond directs C-H insertion
with phenyldiazoacetates to a far greater extent than that
found with diazoacetates alone.

Table 4 Enantioselectivity in Carbon-Hydrogen Insertion Reac-
tions of Isobutyl Phenyldiazoacetate®

yield, % ee, %
catalyst 14* 14°
Rh,(OAc), 79 —
Rh,(S-MEAZ), (4a) 94 90
Rh,(S-IBAZ), (4b) 89 84
Rh,(S-DOSP), (5) 95 56
Rh,(S-DOSP), (5)" 89 86

2Reactions were performed as described in Table 1. PYield after of re-
moval of catalyst. © Analysis on a WHELK-O column using 20%
EtOAc in hexanes. ¢ Reaction performed in pentane.
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