Enantioselective β-Lactone Formation from Phenyldiazoacetates via Catalytic Intramolecular Carbon-Hydrogen Insertion

Michael P. Doyle,* Eric J. May

Department of Chemistry, University of Arizona, Tucson, Arizona 85723, USA Fax +1 520 6264815; E-mail: mdoyle@u.arizona.edu *Received 26 January 2001*

Abstract: Dirhodium(II) catalysts with chiral carboxylate or carboxamidate effectively promote β -lactone formation from phenyldiazoacetates in high yield and with up to 63% ee.

Key words: enantioselective carbon-hydrogen insertion, chiral dirhodium(II) catalysts, phenyldiazoacetates, β -lactones

Dirhodium(II) catalyzed intramolecular carbon-hydrogen insertion reactions originating with diazocarbonyl compounds have enjoyed wide popularity for the synthesis of cycloalkanones, lactones, and lactams.¹⁻⁴ They exhibit a high preference for the formation of five-membered rings and, in the absence of conformational restrictions,⁵ reactivity follows the order tertiary> secondary>> primary.⁶ There are few examples of insertion reactions favoring ring sizes other than five in these reactions,^{1,7-9} even when electronic influences would justify them.¹⁰ Recently, Davies and coworkers have demonstrated that aryldiazoacetates exhibit much higher levels of selectivity in C-H insertion reactions.¹¹ Based on this report and other indicators of reactivity/selectivity,¹ we have searched for carbon-hydrogen insertion reactions that could provide the formation of four-membered ring β -lactones in reasonable yields and with catalyst-directed enantiocontrol.

The first substrate tested was isopropyl phenyldiazoacetate, and we were surprised to find that the corresponding β -lactone was virtually the sole product in reactions that were catalyzed by rhodium acetate and by dirhodium(II)

compounds **4** and **5** (Table 1). Here, insertion into the 3 °C–H bond was favored over insertion into one of six 1 °C–H bonds despite the additional strain introduced by formation of a four- rather than a five-membered ring. Traces of **3**, mainly the *trans*-disubstituted lactone, were observed, but the overall difference in reactivity could be estimated to be greater than 50:1. Products were identified by spectroscopic analysis with reference to literature reports of the same compounds.¹²

 Table 1
 Enantioselectivity in Carbon-Hydrogen Insertion Reactions of Isopropyl Phenyldiazoacetate^a

catalyst	yield, % ^b 2 (Ar = Ph)	ee, $\%^{c}$ 2 (Ar = Ph)
$Rh_2(OAc)_4$	84	
$Rh_2(S-MEAZ)_4(4a)$	83	33
$Rh_2(S-IBAZ)_4(4b)$	79	26
$Rh_2(S-BNAZ)_4(4c)$	66	30
$Rh_2(S-CHAZ)_4(4d)$	85	35
$Rh_2(S-NEPAZ)_4(4e)$	84	24
$Rh_2(S-DOSP)_4(5)$	86	36
$\operatorname{Rh}_2(S\operatorname{-DOSP})_4(5)^d$	78	41

^{*a*} Reactions were performed in refluxing CH_2Cl_2 , unless specified otherwise, using 1.0 mol% of catalyst. ^{*b*}Yield of product after separation of catalyst (up to 70% yield after chromatographic purification). ^{*c*} Enantiomer separation and analyses were performed on a 25-cm, 4.6-mm (*R*,*R*)-WHELK-O column using 5% EtOAc in hexanes (8.2 and 9.0 min for the individual enantiomers). ^{*d*} Reaction performed in refluxing pentane.

Reactions catalyzed by chiral dirhodium(II) compounds, either the $Rh_2(S$ -DOSP)₄ catalyst of Davies⁴ or our own chiral azetidinone-ligated catalysts,^{13,14} generally resulted in β-lactone product in high yield but with only modest enantioselectivities. The use of $Rh_2(S$ -DOSP)₄ produced product with the highest% ee value, especially when the reaction was performed in pentane. Reactions with azetidinone-ligated catalysts in pentane provided no obvious advantages over reactions performed in CH₂Cl₂.

An attempt was made to determine the electronic influence of aryl substituents from aryldiazoacetates on enantiocontrol. However, significantly lower product yields were obtained with Ar = p-MeOC₆H₄ – a substituent that, based on published reports by Davies,^{11,15,16} we thought would lead to modest changes in enantioselectivity,% ee values were considerably lower than those reported in Table 1 (33% ee with **5**). However, with $Ar = p-MeC_6H_4$, $Rh_2(S-DOSP)_4$ gave the corresponding β -lactone in 77% yield with 48% ee, but $Rh_2(S-MEAZ)_4$ gave product in lower yield (34%) and with lower enantioselectivity (27% ee). The reason for this apparent discrepancy is as yet unresolved.

Diazo decomposition of cyclohexyl diazoacetate produces the γ -lactone products virtually exclusively.⁷ The corresponding β -lactone, if formed at all, is a very minor product. In contrast, diazo decomposition of cyclohexyl phenyldiazoacetate **6** gives the corresponding β -lactone product **7**¹⁷ with near exclusivity (Table 2), and the catalyst had virtually no influence on regioselectivity. Here, enantioselectivities were higher than those obtained with isopropyl phenyldiazoacetate. Comparable results were obtained with *cis*-4-methylcyclohexyl phenyl-diazoacetate [with Rh₂(4*S*-MEAZ)₄ in CH₂Cl₂: 74% yield, 44% ee; with Rh₂(*S*-DOSP)₄ in pentane: 56% yield, 44% ee].

 Table 2
 Enantioselectivity and Regioselectivity in Carbon-Hydrogen Insertion Reactions of Cyclohexyl Phenyldiazo-acetate^a

	ee, % ^c		
catalyst	yield, % ^b	7	7:8 ^d
Rh ₂ (OAc) ₄	55	_	98:2
$Rh_2(S-MEAZ)_4(4a)$	67	50	98:2
$Rh_2(S-IBAZ)_4(4b)$	66	51	97:3
$Rh_{4}(S-NEPAZ)_{4}(4c)$	65	42	97:3
$Rh_2(S-DOSP)_4(5)$	52	49	98:2
$Rh_2(S-DOSP)_4(5)^d$	69	63	98:2

^{*a*} Reactions were performed as described in Table 1. ^{*b*} Product yield after separation of catalyst (up to 53% yield of **7** after chromatographic purification). ^{*c*} Enantiomer separation and analyses were performed on a 25-cm, 4.6-mm (R,R)-WHELK-O column using 5% EtOAc in hexanes (8.2 and 9.1 min for the individual enantiomers). ^{*d*} Determined by ¹H NMR of unique spectral regions for **7** (ref. 17) and **8** (ref. 18). ^{*e*} Reaction performed in refluxing pentane.

In each C–H insertion reaction presented thus far the chiral center that is generated is the original diazo-carbon atom with a probable transition state orientation that is depicted in 9. When reactions of 1, 6, and their analogs R and R' are identical and, if insertion occurs as shown in 9,

the configuration of the β -lactone product would be *R*. When R and R' are not identical, one can expect a diastereomeric product distribution that reflects the relative stabilities of attached carbene/catalyst config-uration. This is effectually represented in results from diazo decomposition of (S)-(+)-2-octyl phenyldiazo-acetate (10) from which two diastereometric β -lactone products (11 and **12**)¹⁹ are formed in good yields (Table 3). γ -Lactone products were, at best, trace constituents of the reaction mixture. As expected, changing catalyst configurations, Rh₂(4S-MEAZ)₄ and Rh₂(4R-MEAZ)₄, resulted in modest, but measurable, differences in diastereoselection indicative of match/mismatch in catalyst-substrate interactions. Surprisingly, the 11:12 ratio with $Rh_2(S-$ DOSP)₄ was opposite to that with the 4S- azetidinone-ligated dirhodium(II) catalysts, and the reason for this is unknown.

Table 3 Diastereoselectivity in Carbon-Hydrogen Insertion Reactions of (S)-(+)-2-Octyl Phenyldiazoacetate^{*a*}

	yield, %	ee, %
catalyst	11 + 12 ^b	11:12 ^c
$Rh_2(OAc)_4$	91 ^{<i>d</i>}	37:63
$Rh_2(S-MEAZ)_4(4a)$	79	22:78
$Rh_2(R-MEAZ)_4(ent-4a)$	60	53:47
$Rh_2(S-IBAZ)_4(4b)$	68	36:64
$\operatorname{Rh}_{2}(S\operatorname{-DOSP})_{4}(5)^{\ell}$	56	69:31

^{*a*} Reactions were performed as described in Table 1. ^{*b*}Yield after of removal of catalyst. ^{*c*} Determined by ¹H NMR analysis and confirmed by GC on a SPB-5 column operated at 100 °C. ^{*d*} Column chromatography on silica (2.5-10% EtOAc in hexanes) allowed isolation of **11** (28% yield) and **12** (57% yield) as separate products. ^{*e*} Reaction performed in refluxing pentane.

Overall, dirhodium(II) catalysts are surprisingly selective

Scheme 3

for β -lactone formation, affording these products in high

yield, although with modest enantiocontrol. However, when a tertiary C–H bond is available that could result in a γ -lactone product, as is the case with isobutyl phenyldiazoacetate (**13**), only the γ -lactone product is observed (Table 4). Here use of the chiral azetidinone- ligated catalysts gave comparable% ee values for the insertion product (**14**) to results from Rh₂(S-DOSP)₄ in pentane. Clearly, the presence of a tertiary C–H bond directs C–H insertion with phenyldiazoacetates to a far greater extent than that found with diazoacetates alone.

 $\label{eq:table_$

catalyst	yield, % 14 ^b	ee, % 14 [°]
Rh ₂ (OAc) ₄	79	
$Rh_{2}(S-MEAZ)_{4}(4a)$	94	90
$Rh_{2}(S-IBAZ)_{4}(4b)$	89	84
$Rh_2(S-DOSP)_4(5)$	95	56
$\operatorname{Rh}_2(S\operatorname{-DOSP})_4(5)^d$	89	86

^{*a*}Reactions were performed as described in Table 1. ^{*b*}Yield after of removal of catalyst. ^{*c*} Analysis on a WHELK-O column using 20% EtOAc in hexanes. ^{*d*} Reaction performed in pentane.

Scheme 4

Acknowledgement

Support for this research from the National Science Foundation and from the National Institutes of Health (GM-46503) is gratefully acknowledged. We are grateful to Professor Huw M. L. Davies for providing us with a generous sample of $Rh_2(S-DOSP)_4$. This letter is dedicated to Professor Ryogi Noyori, whose insightful contributions to the development of asymmetric catalysis for metal carbene transformations has led us to fruitful discoveries.

References and Notes

- Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; Wiley, New York, 1998.
- (2) Doyle, M. P.; McKervey, M. A. J. C. S. Chem. Commun. 1997, 983. Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
- (3) Padwa, A.; Austin, D. J. Angew. Chem. Int. Ed. Engl. 1994, 33, 1797. Padwa, A.; Krumpe, K. E. Tetrahedron 1992, 48, 5385.
- (4) Davies, H. M. L. Eur. J. Org. Chem. 1999, 2459.
- (5) Doyle, M. P.; Westrum, L. J.; Wolthuis, N. E.; See, M. M.; Boone, W. P.; Bagheri, V.; Pearson, M. M. J. Am. Chem. Soc. 1993, 115, 958.
- (6) Taber, D. F.; Ruckle, R. E., Jr. J. Am. Chem. Soc. 1986, 108, 7686.
- (7) Doyle, M. P.; Kalinin, A. V.; Ene, D. G. J. Am. Chem. Soc. 1996, 118, 8837.
- (8) Anada, M.; Hashimoto, S. Tetrahedron Lett. 1998, 39, 79.
- (9) Wee, A. G. H. *Tetrahedron Lett.* **2000**, *41*, 9025.
- (10) Wang, P.; Adams, J. J. Am. Chem. Soc. 1994, 116, 3296.
- (11) Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063.
- (12) Imai, T.; Nichida, S. J. Org. Chem. 1979, 44, 3574.
- (13) Doyle, M. P.; Zhou, Q.-L.; Simonsen, S. H.; Lynch, V. Synlett **1996**, 697.
- (14) Doyle, M. P.; Davies, S. B.; Hu, W. Org. Lett. 2000, 2, 1145.
- (15) Davies, H. M. L.; Hansen, T.; Hopper, D.; Penaro, S. A. J. Am. Chem. Soc. **1999**, *121*, 6509.
- (16) Davies, H. M. L.; Stafford, D. G.; Hansen, T. Org. Lett. **1999**, *1*, 233.
- (17) Hoppe, I.; Schöllkopf, U. Liebigs Ann. Chem. 1979, 219.
- (18) Black, T. H.; DuBay, W. J.; Tully, P. S. J. Org. Chem. 1988, 53, 5922.
- (19) Diastereoisomers were separated, and they were identified by spectral methods; assignments were based on nOe experiments.

Article Identifier:

1437-2096,E;2001,0,SI,0967,0969,ftx,en;Y02801ST.pdf