Synthesis Alerts is a monthly feature to help readers of Synthesis keep abreast of new reagents, catalysts, ligands, chiral auxiliaries, and protecting groups which have appeared in the recent literature. Emphasis is placed on new developments but established reagents, catalysts etc. are also covered if they are used in novel and useful reactions. In each abstract, a specific example of a transformation is given in a concise format designed to aid visual retrieval of information.

Synthesis Alerts is a personal selection by: Fabrice Anizon, Robert Chow, and Sukhjinder Uppal, Department of Chemistry, Leeds University.

Georg Thieme Verlag does not accept responsibility for the accuracy, content, or selection of the data.

Article Identifier: 1437-210X,E:2001,0,03,0499,0504,ftx,en;X00301SS.pdf

Hexafluoro-2-propanol (HFIP)

The title reagent, when used as the solvent, facilitates the ring opening of oxiranes by aryl amines in the formation of β-aminooxiranes and the synthesis of β-amino alcohols.

![Reagent](image)

11 examples (yields 68-92%) are reported.

N-Hydroxyphthalimide (NHPI) / Cobalt(II) Acetate

The title reagent pair catalyses the oxidation of primary and secondary alcohols, and diols with molecular oxygen.

![Catalyst](image)

22 examples (yields 47-98%) are reported.

3,5-Di-tert-butylphenyl Ferroceny1 Amine

The title reagent was developed for use in copper-catalysed, enantioselective allylic substitution with organometallic reagents.

![Ligand](image)

8 examples (yields 72-89%, ee = 44-89%) are reported.
Nickel(II) Chloride / Triphenylphosphine Complex

The title reagent catalyses the cross-coupling of aryboronic acids with ary chlorides for the synthesis of biaryl.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reaction</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCl₂(PPh₃)₂</td>
<td>4-tolyB(OH)₂ (1.3 eq), A (0.03 eq), K₂PO₄·H₂O (2.6 eq)</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>PhMe, 80°C, 2 h</td>
<td></td>
</tr>
</tbody>
</table>

22 examples (yields 15, 68-99%) are reported.

Trifluoromethyltrimethylsilane

The title reagent is used for the trialkylsilylation of terminal alkynes, catalysed by cesium or potassium fluoride.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Reaction</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMSCF₃</td>
<td>TaN(I)</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>In THF, rt, 0.5 h</td>
<td></td>
</tr>
</tbody>
</table>

25 examples (yields 40-100%) are reported.

Indium

The title reagent is used for the reductive coupling of acyl cyanides to give the corresponding 1,2-diketones, in good to moderate yields.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Reaction</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>Ph-CN A</td>
<td>82%</td>
</tr>
<tr>
<td></td>
<td>DMF, rt, 8 h</td>
<td></td>
</tr>
</tbody>
</table>

12 examples (yields 0, 60-78%) are reported.

Tetraallylstannane

The title reagent is used for the allylation of N-protected aminoaldehydes to give the corresponding homoallylic alcohols in excellent yields and good diastereoselectivities.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Reaction</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sn₄)</td>
<td>NH₂</td>
<td>82%</td>
</tr>
<tr>
<td></td>
<td>Ph</td>
<td>MeOH, 30°C, 1 d</td>
</tr>
</tbody>
</table>

6 examples (yields 68-94%, %de = 50-86%) are reported.

Palladium Hydroxide / Charcoal

The title catalyst can be used with formaldehyde to methylate N-mono-alkylated amino acids in good to excellent yields.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reaction</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%Pd(OH)₂/C</td>
<td>A</td>
<td>73%</td>
</tr>
<tr>
<td></td>
<td>HCHO (5.9 eq) H₂ (50 psi)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EtOH, 50°C</td>
<td></td>
</tr>
</tbody>
</table>

4 examples (yields 58-92%) are reported.
Bis(methoxyethyl)zirconocene Dihydride

The title reagent can be used for the reductive coupling of alkenes, dienes and enynes.

![Chemical structure](image1)

(a) A (0.5 eq) THF, rt, 4 h
(b) Br₂ (1.6 eq) 0°C, 1 h 82%

8 examples (yields 28-82%) are reported.

C₂-Symmetric Chiral Quaternary Ammonium Salts

The title phase-transfer catalyst can be used for the asymmetric synthesis of L-Dopa and related amino acid esters.

![Chemical structure](image2)

A (1 mol%) toluene-50% KOH aq, 0°C, 1 h
1M citric acid THF, rt, 10 h

1 example (yield 80%, %ee = 90%) is reported.

Ferrocenyl Oxazoline

The title reagent catalyses the formation of arylphenylmethanols from benzaldehydes with very high selectivities.

![Chemical structure](image3)

A (10 mol%) ZnP(C₆H₄)₂ (6.6 eq) ZnEt₂ (1.3 eq)
PhMe, 10°C, 12 h

12 examples (yields 64-99%, %ee 83-98%) are reported.

1,1'-Bis(diphenylphosphanyl)ferrocene

The title reagent acts as chiral ligand for palladium-catalysed allylic substitution with high diastereoselectivity and enantioselectivity.

![Chemical structure](image4)

A (10 mol%) (CH₂)₃CO (1.1 eq) CIM[NP] (1.1 eq) [Pd₂(dba)₃]CHCl₂ (2.5 mol%) A (10 mol%)
THF, 16°C, 16 h

7 examples (%de 20-94%) are reported.

N,N'-Bis(2-pyridinecarboxyl)-1,2-cyclohexanediamine

The title reagent can be used for microwave-heated molybdenum(0)-catalysed asymmetric allylic alkylation.

![Chemical structure](image5)

N₂O-bis(trimethylsilyl)acetamide (1.2 eq) A (5 mol%) CH₂(COOMe)₂ (1.1 eq)
Mo(CO)₆ (4 mol%) THF, 120 W, 5 min

12 examples (yields 1, 11, 59-94%, %ee = 95-98%) are reported.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Conjugate Addition Catalyst</th>
</tr>
</thead>
</table>
| The title reagent catalyses the asymmetric conjugate addition of azide to α,β-unsaturated carbonyl compounds. | T. E. Horstmann, D. J. Guerin, S. J. Miller
| 6 examples (yields 79-97%, %ee = 45-85%) are reported. | |

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Dodecacarbonyltetracobalt / Cyclohexylamine</th>
</tr>
</thead>
</table>
| The title reagent pair catalyse the Pauson-Khand reaction. | M. E. Krafft, L. V. R. Bonaga
| 10 examples (yields 44-94%) are reported. | |

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>(R)-3,3'-dimethyl-1,1'-binaphth-2,2'diamine (DM-DABN)</th>
</tr>
</thead>
</table>
| The title reagent catalyses the hydrogenation of ketones through asymmetric activation / deactivation. | K. Mikami, T. Koranaga, T. Ohkuma, R. Noyori
| 7 examples (yields 99%, %ee = 91-96%) are reported. | |

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Dicarbonyl(acetylacetonate)rhodium</th>
</tr>
</thead>
</table>
| The title reagent catalyses the carbonylation of organomercurial chlorides to generate aldehydes. | S. T. Sarraf, J. L. Leighton
| 5 examples (yields 60-79%) are reported. | |

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>η²-Allylpalladium Chloride</th>
</tr>
</thead>
</table>
| The title reagent catalyses the cross-coupling of aryl halides with (α-alkoxyvinyl)trisilanol and (α-alkoxyvinyl)silyl hydrides in the presence of tetra-n-butylammonium fluoride or hydroxide. | S. E. Denmark, L. Neuville
| 14 examples (yields 71-94%) are reported. | |
Indium

The title reagent mediates the coupling of 1,4-dibromo-2-butyne with carbonyl compounds in aqueous media to give good yields of the 1,3-butenadien-2-ylmethane.

7 examples (yields 55-66%) are reported.

(R,R)-Pseudoephedrine

The title reagent can be utilised as a chiral auxiliary for synthesizing α-substituted β-amino acids.

4 examples (yields 52-74%, ℓee = 75-99%) are reported.

Methyl Bis(2,2,2-trifluoroethoxy)bromophosphonoacetate

The title reagent can be used for the preparation of (E)-α,bromocrolylates, using the Horner–Wadsworth–Emmons reaction, with high stereoselectivity and excellent yield.

24 examples (yields 43, 64-99%, 7:1 ≤ E:Z ≤ 1:0) are reported.

Bis(1,4-cyclooctadiene)rhodium Tetrafluoroborate

The title reagent catalyses the Grignard-type carbonyl phenylation of aldehydes by trimethylphenylstannane, in water and under air atmosphere.

11 examples (yields 52-92%) are reported.

Aluminium Tris(2,6-diphenylphenoxide)

The title reagent complexes with aromatic acyl chlorides allowing conjugate addition of nucleophiles to aromatic systems.

10 examples (yields 41-99%, 3:4:1 ≤ 1:6:1,4:1 ≤ 99:1) are reported.
Tris(2,6-diphenylbenzyl)silyl Bromide (TDS-Br)

The title reagent can be used to protect carboxylic acids against various nucleophilic attacks and β-deprotonations.

4 examples (yields 84-93%) are reported.

Chiral Phosphine Ligand

The title reagent acts as a chiral bidentate ligand for the asymmetric intermolecular Pauson-Khand reaction.

5 examples (yields 92-99%, %ee = 57-99%) are reported.

Chiral Hydroxamic Acid Ligand

The title reagent is used as a ligand for the vanadium-catalysed asymmetric epoxidation of allylic alcohols.

9 examples (yields 58-99%, %ee = 76-98%) are reported.

PINDY

The title ligand, when complexed with copper, can be used to catalyse asymmetric allylic oxidation, with high efficiency and good enantioselectivity.

3 examples (yields 96%, %ee = 48-75%) are reported.

Ytterbium Triflate

The title reagent catalyses the oxymercuration of hemiketals and hemiacetals derived from homoallylic alcohols and acetone or benzaldehyde, with HgOAc.

9 examples (yields 54-85%) are reported.