Plant Biol (Stuttg) 2000; 2(1): 113-120
DOI: 10.1055/s-2000-9153
Original Paper
Georg Thieme Verlag Stuttgart ·New York

The Effect of Elevated [CO2] on Uptake and Allocation of 13C and 15N in Beech (Fagus sylvatica L.) during Leafing

J. Dyckmans 1 , H. Flessa 1 , Andrea Polle 2 , and F. Beese 1
  • 1 Institute of Soil Science and Forest Nutrition
  • 2 Institute of Forest Botany, University of Göttingen, Göttingen, Germany
Further Information

Publication History

September 1, 1999

November 18, 1999

Publication Date:
31 December 2000 (online)

Abstract:

A continuous dual 13CO2 and 15NH4 15NO3 labelling experiment was undertaken to determine the effects of ambient (350 ìmol mol−1) or elevated (700 ìmol mol−1) atmospheric CO2 concentrations on C and N uptake and allocation within 3-year-old beech (Fagus sylvatica L.) during leafing. After six weeks of growth, total carbon uptake was increased by 63 % (calculated on total C content) under elevated CO2 but the carbon partitioning was not altered. 56 % of the new carbon was found in the leaves. On a dry weight basis was the content of structural biomass in leaves 10 % lower and the lignin content remained unaffected under elevated as compared to ambient [CO2]. Under ambient [CO2] 37 %, and under elevated [CO2] 51 %, of the lignin C of the leaves derived from new assimilates. For both treatments, internal N pools provided more than 90 % of the nitrogen used for leaf-growth and the partitioning of nitrogen was not altered under elevated [CO2]. The C/N ratio was unaffected by elevated [CO2] at the whole plant level, but the C/N ratio of the new C and N uptake was increased by 32 % under elevated [CO2].

Abbreviations:

PDB: PeeDee Belemnite RSA: relative specific allocation R/S ratio: root/shoot ratio

References

  • 01 Benner,  R.,, Fogel,  M. L.,, Sprague,  E. K.,, and Hodson,  R. E.. (1987);  Depletion of 13C in lignin and its implications for stable carbon isotope studies.  Nature. 329 708-710
  • 02 Bruce,  R. J., and West,  C. A.. (1989);  Elicitiation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of Castor bean.  Plant Physiology. 91 889-897
  • 03 Buchmann,  N.,, Brooks,  J. R.,, Rapp,  K. D.,, and Ehleringer,  J. R.. (1996);  Carbon isotope composition of C4 grasses is influenced by light and water supply.  Plant Cell and Environment. 19 392-402
  • 04 Burke,  M. K.,, Raynal,  D. J.,, and Mitchell,  M. J.. (1992);  Soil nitrogen availability influences seasonal carbon allocation patterns in sugar maple (Acer saccharum). .  Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestière. 22 447-456
  • 05 Ceulemans,  R., and Mousseau,  M.. (1994);  Effects of elevated atmospheric CO2 on woody plants: A review.  New Phytologist. 127 425-446
  • 06 Cliquet,  J. B.,, Deléens,  E.,, and Mariotti,  A.. (1990);  C and N mobilization from stalk and leaves during kernel filling by 13C and 15N tracing in Zea mays L.  Plant Physiology. 94 1547-1553
  • 07 Deléens,  E.,, Cliquet,  J. B.,, and Prioul,  J. L.. (1994);  Use of 13C and 15N plant label near natural abundance for monitoring carbon and nitrogen partitioning.  Australian Journal of Plant Physiology. 21 133-146
  • 08 Deléens,  E.,, Pavlidès,  D.,, and Queiroz,  O.. (1983);  Application du traçage isotopique naturel par le 13C à la mesure du renouvellement de la matière foliaire chez les plantes en C3.  Physiologie Végétale. 21 723-729
  • 09 Dickson,  R. E.. (1989);  Carbon and nitrogen allocation in trees.  Annales des Sciences Forestières. 46 631-647
  • 10 Dickson,  R. E.,, Isebrands,  J. G.,, and Tomlinson,  P. T.. (1990);  Distribution and metabolism of current photosynthate by single-flush northern red oak seedlings.  Tree Physiology. 7 65-77
  • 11 El Kohen,  A.,, Venet,  L.,, and Mousseau,  M.. (1993);  Growth and photosynthesis of two deciduous forest species at elevated carbon dioxide.  Functional Ecology. 7 480-486
  • 12 Flessa,  H., and Beese,  F.. (1995);  Effects of sugarbeet rsidues on soil redox potential and nitrous oxide emission.  Soil Science Society of America Journal. 59 1044-1051
  • 13 Fordham,  M.,, Barnes,  J. D.,, Bettarini,  I.,, Polle,  A.,, Slee,  N.,, Raines,  C.,, Miglietta,  F.,, and Raschi,  A.. (1997);  The impact of elevated CO2 on growth and photosynthesis in Agrostis Canina L. ssp. monteluccii adapted to contrasting atmospheric CO2 concentrations.  Oecologia. 110 169-178
  • 14 Gorissen,  A.,, Kuikman,  P. J.,, van Ginkel,  J. H.,, Vandebeek,  H.,, and Jansen,  A. G.. (1996);  ESPAS - An advanced phytotron for measuring carbon dynamics in a whole plant-soil system.  Plant and Soil. 179 81-87
  • 15 Hantschel,  R. E.,, Flessa,  H.,, and Beese,  F.. (1994);  An automated microcosm system for studying soil ecological processes.  Soil Science Society of America Journal. 58 401-404
  • 16 Hendrick,  R. L., and Pregitzer,  K. S.. (1993);  The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems.  Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestière. 23 2507-2520
  • 17 Horwath,  W. R.,, Pregitzer,  K. S.,, and Paul,  E. A.. (1994);  14C allocation in tree-soil systems.  Tree Physiology. 14 1163-1176
  • 18 Lacointe,  A.,, Kajji,  A.,, Daudet,  F. A.,, Archer,  P.,, and Frossard,  J. S.. (1995);  Seasonal variation of photosynthetic carbon flow rate into young walnut and its partitioning among the plant organs and functions.  Journal of Plant Physiology. 146 222-230
  • 19 Lee,  H. S. J.,, Overdieck,  D.,, and Jarvis,  P. G.. (1998) Biomass, growth and carbon allocation. European Forests and Global Change. Jarvis, P. G., ed. Cambridge; University Press 191
  • 20 Maillard,  P.,, Deléens,  E.,, Daudet,  F. A.,, Lacointe,  A.,, and Frossard,  J. S.. (1994);  Carbon and nitrogen partitioning in walnut seedlings during the acquisition of autotrophy through simultaneous 13CO2 and 15NO3 long-term labelling.  Journal of Experimental Botany. 45 203-210
  • 21 Marino,  B. D., and McElroy,  M. B.. (1991);  Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose.  Nature. 349 127-131
  • 22 Millard,  P.. (1996);  Ecophysiology of the internal cycling of nitrogen for tree growth.  Zeitschrift für Pflanzenernährung und Bodenkunde. 159 1-10
  • 23 Mordacq,  L.,, Mousseau,  M.,, and Deléens,  E.. (1986);  A 13C method of estimation of carbon allocation to roots in a young chestnut coppice.  Plant Cell and Environment. 9 735-739
  • 24 Norby,  R. J.. (1996);  Oaks in a high-CO2 world.  Annales des Sciences Forestières. 53 413-429
  • 25 Norton,  J. M.,, Smith,  J. L.,, and Firestone,  M. K.. (1990);  Carbon flow in the rhizosphere of ponderosa pine seedlings.  Soil Biology and Biochemistry. 22 449-455
  • 26 Overdiek,  D.. (1993);  Erhöhte CO2-Konzentration und Wachstum junger Buchen (Fagus sylvatica). .  Verhandlungen der Gesellschaft für Ökologie. 22 431-438
  • 27 Picon,  C.,, Ferhi,  A.,, and Guehl,  J. M.. (1997);  Concentration and δ13C of leaf carbohydrates in relation to gas exchange in Quercus robur under elevated CO2 and drought.  Journal of Experimental Botany. 48 1547-1556
  • 28 Polle,  A.,, Eiblmeier,  M.,, Sheppard,  L.,, and Murray,  M.. (1997);  Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes.  Plant Cell and Environment. 20 1317-1321
  • 29 Polle,  A., and Morawe,  B.. (1995);  Seasonal changes of the antioxidative systems in foliar buds and leaves of field-grown beech trees (Fagus sylvatica) in a stressful climate.  Botanica Acta. 108 314-320
  • 30 Poorter,  H.,, van Berkel,  Y.,, Baxter,  R.,, Den Hertog,  J.,, Dijkstra,  P.,, Gifford,  R. M.,, Griffin,  K. L.,, Roumet,  C.,, Roy,  J.,, and Wong,  S. C.. (1997);  The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species.  Plant Cell and Environment. 20 472-482
  • 31 Saxe,  H.,, Ellsworth,  D. S.,, and Heath,  J.. (1998);  Tree and forest functioning in an enriched CO2 atmosphere.  New Phytologist. 139 395-436
  • 32 Schnyder,  H.. (1992);  Long-term steady-state labelling of wheat plants by use of natural 13CO2/12CO2 mixtures in an open, rapidly turned-over system.  Planta. 187 128-135
  • 33 Stitt,  M.. (1991);  Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells.  Plant Cell and Environment. 14 741-762
  • 34 van den Driessche,  R.. (1987);  Importance of current photosynthate to new root growth in planted conifer seedlings.  Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestière. 17 776-782
  • 35 Vivin,  P., and Guehl,  J. M.. (1997);  Changes in carbon uptake and allocation patterns in Quercus robur seedlings in response to elevated CO2 and water stress: an evaluation with 13C labelling.  Annales des Sciences Forestières. 54 597-610
  • 36 Vivin,  P.,, Martin,  F.,, and Guehl,  J. M.. (1996);  Acquisition and within-plant allocation of 13C and 15N in CO2-enriched Quercus robur plants.  Physiologia Plantarum. 98 89-96
  • 37 Wullschleger,  S. D.,, Norby,  R. J.,, and Gunderson,  C. A.. (1997) Forest trees and their response to atmospheric carbon dioxide enrichment: A compilation of results. Advances in carbon dioxide effects research. Allen, L. H. et al., eds. Madison; American Society of Agronomy 100

J. Dyckmans

Institute of Soil Science and Forest Nutrition University of Göttingen

Büsgenweg 2

37077 Göttingen

Germany

Section Editor: M. Riederer

Email: jdyckma@gwdg.de

    >