Plant Biol (Stuttg) 2000; 2(5): 525-529
DOI: 10.1055/s-2000-7472
Rapid Communication
Georg Thieme Verlag Stuttgart ·New York

Evolution of Filamentous Ascomycetes Inferred from LSU rDNA Sequence Data

H. T. Lumbsch, R. Lindemuth, I. Schmitt
  • Botanisches Institut, Universität Essen, Essen, Germany
Further Information

Publication History

June 5, 2000

July 15, 2000

Publication Date:
31 December 2000 (online)

Abstract

The nuclear LSU rRNA gene was examined in order to evaluate the current phylogeny of ascomycetes, which is mainly based on nuclear SSU rRNA data. Partial LSU rRNA gene sequences of 19 ascomycetes were determined and aligned with the corresponding sequences of 13 other ascomycetes retrieved from Genbank, including all classes traditionally distinguished and most of the recently accepted classes. The classification based on SSU rDNA data and morphological characters is supported, while the traditional classification and classifications based on the ascus type are rejected. Ascomycetes with perithecia and cleistothecia form monophyletic groups, while the discomycetes are a paraphyletic assemblage. The Pezizales are basal to all other filamentous ascomycetes. The monophyly of Loculoascomycetes is uncertain. The results of the LSU rDNA analysis agree with those of the SSU rDNA and RPB2 gene analyses, suggesting that most classes circumscribed in the filamentous ascomycetes are monophyletic. The branching order and relationships among these classes, however, cannot be elucidated with any of these data sets.

Abbreviations

LSU: large subunit

rDNA: ribosomal deoxyribonucleic acid

RPB2: gene coding for an RNA polymerase II subunit

rRNA: ribosomal ribonucleic acid

SSU: small subunit

References

  • 01 Alexopoulos,  C. J.,, Mims,  C. W.,, and Blackwell,  M.. (1996) Introductory Mycology, 4th ed. New York; John Wiley and Sons
  • 02 Berbee,  M. L.. (1996);  Loculoascomycete origins and evolution of filamentous ascomycete morphology based on 18S rRNA gene sequence data.  Mol. Biol. Evol.. 13 462-470
  • 03 Berbee,  M. L., and Taylor,  J. W.. (1992);  Two classes based on fruiting-body characters and ribosomal DNA sequence.  Mol. Biol. Evol.. 9 278-284
  • 04 Berbee,  M. L., and Taylor,  J. W.. (1995);  From 18S ribosomal sequence data to evolution of morphology among the fungi.  Can. J. Bot.. 73, Suppl. 1 S677-S683
  • 05 Castresana,  J.. (2000);  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.  Mol. Biol. Evol.. 17 540-552
  • 06 Cubero,  O. F.,, Crespo,  A.,, Fathei,  J.,, and Bridge,  P. D.. (1999);  DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized and other fungi.  Pl. Syst. Evol.. 216 243-249
  • 07 Döring,  H.,, Clerc,  P.,, Grube,  M.,, and Wedin,  M.. (2000);  Mycobiont specific PCR primers for the amplification of nuclear ITS and LSU rDNA from lichenised ascomycetes.  Lichenologist. 32 200-204
  • 08 Eriksson,  O. E., and Winka,  K.. (1997);  Supraordinal taxa of Ascomycota.  Myconet. 1 1-16
  • 09 Farris,  J. S.. (1989);  The retention index and the rescaled consistency index.  Cladistics. 5 417-419
  • 10 Felsenstein,  J.. (1985);  Confidence limits on phylogenies: an approach using the bootstrap.  Evolution. 39 783-791
  • 11 Gargas,  A., and DePriest,  P.. (1996);  A nomenclature for fungal PCR primers with examples from intron-containing SSU rDNA.  Mycologia. 88 745-748
  • 12 Gargas,  A., and Taylor,  J. W.. (1995);  Phylogeny of Discomycetes and early radiations of the apothecial Ascomycotina inferred from SSU rDNA sequence data.  Exp. Mycol.. 19 7-15
  • 13 Kishino,  H., and Hasegawa,  M.. (1989);  Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea.  J. Mol. Evol.. 29 170-179
  • 14 Kluge,  A. G., and Farris,  J. S.. (1969);  Quantitative phyletics and the evolution of anurans.  Syst. Zool.. 18 1-32
  • 15 Liu,  Y. J.,, Whelen,  S.,, and Hall,  B. D.. (1999);  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit.  Mol. Biol. Evol.. 16 1799-1808
  • 16 Luttrell,  E. S.. (1951);  Taxonomy of pyrenomycetes.  Univ. Miss. Stud.. 24 1-120
  • 17 Nannfeldt,  J. A.. (1932);  Studien über die Morphologie und Systematik der nicht-lichenisierten inoperculaten Discomyceten.  Nov. Acta Reg. Soc. Sci. Ups.. ser. IV 8 (2) 1-368
  • 18 Page,  R. D. M.. (1996);  Treeview: an application to display phylogenetic trees on personal computers.  Comp. Appl. Biosci.. 12 357-358
  • 19 Reynolds,  D. R.. (1981) Ascomycete Systematics. The Luttrellian Concept. New York, Heidelberg & Berlin; Springer Verlag
  • 20 Reynolds,  D. R.. (1989);  The bitunicate ascus paradigm.  Bot. Review. 55 1-52
  • 21 Spatafora,  J. W.. (1995);  Ascomal evolution of filamentous ascomycetes: evidence from molecular data.  Can. J. Bot.. 73, Suppl. 1 S811-S815
  • 22 Stenroos,  S. K., and DePriest,  P. T.. (1998);  SSU rDNA phylogeny of cladoniiform lichens.  Am. J. Bot.. 85 1548-1559
  • 23 Swofford,  D. L.. (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, Mass.; Sinauer Associates
  • 24 Thompson,  J. D.,, Higgins,  D. G.,, and Gibson,  T. J.. (1994);  Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.  Nucl. Acids Res.. 22 4673-4680
  • 25 Vilgalys,  R., and Hester,  M.. (1990);  Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species.  J. Bacteriol.. 172 4238-4246
  • 26 Winka,  K.,, Eriksson,  O. E.,, and Bång,  A.. (1998);  Molecular evidence for recognizing the Chaetothyriales.  Mycologia. 90 822-830

H. T. Lumbsch

Botanisches Institut Universität Essen

45117 Essen Germany

Email: lumbsch@uni-essen.de

Section Editor: H. M. Jahns

    >