Scandium Triflate

Compiled by Deborah Longbottom

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

Deborah Longbottom studied chemistry at the University of Durham where she received her B.Sc. in 1997. She then worked for one year for GlaxoWellcome Plc. in Stevenage, Herts and is currently working on her Ph.D. thesis under the supervision of Professor Steven V. Ley.

Abstracts

A) Friedel-Crafts alkyl- and acylation reactions usually require a stoichiometric amount of Lewis acid to facilitate complete reaction. However, a catalytic amount of Sc(OTf)₃ is sufficient to facilitate the same transformation.¹

B) Sc(OTf)₃ catalysed three-component couplings can be carried out affording amino esters 3 and γ-acyl-δ-lactam derivatives 4 stereoselectively in high yields.² This is a powerful tool for the preparation of libraries of δ-lactam derivatives. Similar four-component couplings have also been carried out.³

C) Sc(OTf)₃ is a useful Lewis acid catalyst for acylation of alcohols with acid anhydrides and esterification between alcohols and carboxylic acids.⁴

D) Allylation reactions of carbonyl compounds with tetraallyltin (6) occur smoothly under the influence of a catalytic amount of Sc(OTf)₃.⁵ Three component reactions of aldehydes, amines and allylttributyltin (8) also proceed smoothly.⁶ No direct reaction with aldehyde is observed.

References and Notes

Preparation: Scandium triflate is commercially available but can also be prepared from the corresponding oxide (Sc₂O₃) and aqueous trifluoromethanesulfonic acid (TfOH).⁴

Sc₂O₃ + 6TfOH

2Sc(OTf)₃ + 3H₂O

⁵ Scandium triflate can be recovered almost quantitatively after the desired reaction and can be recycled in subsequent reactions without loss of activity.¹

SYNLETT SPOTLIGHT 2023

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.