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Abstract: The synthesis of morphine alkaloids involving sigmatropic
rearrangements and novel ring closures of aromatic methyl pentenyl
ethers is reported.

Recently, we described an asymmetric formal total synthesis of
(-)-codeine and (-)-morphine, employing the conjugate addition of a
vinyl cuprate to the optically pure enone 1 followed by o-bromination
and SN2 ring closure as the key sequence.! The resulting ketone 2 was
then transformed into (-)-dihydrocodeinone, a standard synthetic
precursor of the opium alkaloids.2
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We now report alternative strategies for the construction of the crucial
benzylic quarternary stereogenic carbon (C-13) and the ring closure of
the dihydrofurane E. We noticed that Claisen rearrangements3 can be
conveniently pursued in parallel with 1,4- additions of vinyl cuprates.
Both synthetic strategies can be (directly or indirectly) applied to
enones, and are suitable for the construction of quaternary stereogenic
carbons bearing two functionalized Ca-residues:
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In fact, sigmatropic rearrangements are well established methods for

the construction of benzylic quaternary stereogenic centers.# They were
successfully employed for the synthesis of sceletium#2< and
amaryllidaceae®d alkaloids and functioned as key reaction in
Rapoport'sS and Parson's?b formal total syntheses of morphine.

Our synthesis starts with the phenanthrenone 1, which was prepared in
4 steps from commercially available 4-(3,4-dimethoxyphenyl)-butyric
acid.] Compound 1 contains the entire carbocyclic framework of
morphine and shows the correct substitution pattem of the aromatic
ring A, the nucleophilicity of which is attenuated by the chlorine
substituent. DIBAH-reduction of 1 afforded a 82:18 mixture of
diasteromeric allylic alcohols in favor of 3 in 99 % combined yield
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Scheme 2. (a) DIBAH, THF, -78 °C (80 %). (b) N,N-Dimethyl-
acetamide dimethyl acetal, PhMe, reflux (64 %). (c) LiBHEt3, THF,
r.t. (96 %). (d) PhSO2NHMe, ADDP, BusP, r.t. (90 %). (e) Dimethyl
dioxirane, CH2Clp, 0 °C — r.t. (80 %). (f) TFA, THF, r.t. (83 %).
(g) Hp, Pd/C, EgN, MeOH, r.t. (88 %). (h) Swern oxidation, -78 °C
= r.t. (90 %). j) TMSCL, (CH;0H);, CH,Cly, 1.t. (92 %). (k) NBS,
(PhCOO)3, CCly, reflux. (65 %). (1) Li, NH3, THF, +-BuOH; (80 %).
(m) 3 N HCL, 90 °C (95%)
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(Scheme 2). Other reducing agents (e.g. NaBH4, NaBH4/CeCl3), as
well as the change of solvent and temperature led to lower
diastereomeric ratios in comparable yields. Strategically, the
stereochemical outcome of this reduction is of litde concern, since
morphinanes with the unnatural configuration at C-14 can be
epimerized by known procedures.266 In fact, this had to be done in the
very first total synthesis of morphine by Gates and Tschudi.6
Gratifyingly, the major isomer 3 proved to have the "correct" relative
configuration. With ample amounts of allylic alcohol 3 at hand, we
studied the [3,3]- and [2,3]-sigmatropic rearrangements of the
molecule.

The Eschenmoser-Claisen rearrangement’ of 3 afforded dimethyl
amide 4. This reaction creates the critical benzylic quaternary
stereocenter (bearing a two carbon side chain) and places a A5-6 double
bond into ring C. The relative stereochemistry of 4 was elucidated by
single crystal structure analysis,8 which also clarified the
stereochemistry of precursor 3 (Figure 1). All attempts to perform the
Johnson- or Ireland- variant of the Claisen rearrangement were
unsuccessfull in our hands, probably due to the acid sensitivity of 3
and the considerable sterical hindrance at its reaction center.

Figure 1. X-ray structure of amide 4

In order to test the [2,3]-Wittig-Still rearrangement,” allylic alcohol 3
was converted into the corresponding stannylmethyl ether 11 (Scheme
3). Tin-lithium exchange, followed by [2,3]-sigmatropic rearrangement
furnished the homoallylic alcohol 12.

We continued our synthesis with amide 4, which was reduced with
LiBHEt3 to afford the primary alcohol 5 (Scheme 2). Mitsunobu
reaction with N-methylbenzenesulfonamide, 1,1'-(azodicarbonyl)-
dipiperidine (ADDP) and tributylphosphine10 furnished sulfonamide 6.
In principle, amide 4 already contains the N-CH3 moiety of the
morphine alkaloids. Elaboration of this functional group, however,
requires a difficult mono N-demethylation, and was therefore
discarded.
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Scheme 3. (a) KH, BusSnCHaI (89 %). (b) n-BuLi, - 95 °C —
-70 °C (54 %)

The stage was now set for the closure of the dihydrofuran ring E. We
anticipated that electrophilic activation of the-A5:6 double bond (Et =
Br+, OH*) would lead to a methyl oxonium ion by participation of the
4-methoxy group, which would then be demethylated by the counter
nucleophile Nu~ (Scheme 4). Thus, deprotection of the C-4 methoxy
group and closure of ring E would be achieved in a single synthetic
step.1l It may be noted, that this sequence can only proceed via
conformer B and not via A which corresponds to the conformation of
4 in the crystal (Figure 1).
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Scheme 4. E+ = Brt, OHt; Nu™ = Br-, CF3CO0-

Epoxidation of 6 with dimethyldioxirane afforded a 8.5:1 mixture of
diastereomeric epoxides in favor of the desired isomer 7 which already
contains all carbon-, oxygen- and nitrogen-atoms of codeine and
morphine (89 % combined yield). By contrast, epoxidation with
mCPBA was completely unselective. The reaction of primary alcohol 5
with mCPBA fumished tetrahydrofuranes 13 and 14 along with small
amounts of the corresponding B-cpoxide, whereas vanadyl acetyl-
acetonate/tert-butyl hydroperoxide yielded 14 as the only isolable

13 14
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product. Compound 14 is most likely formed by way of a
neighbouring group participation of the 4-methoxy group, which
results in epoxide opening with net retention of configuration.

Treatment of the B-epoxide 7 with trifluoroacetic acid (TFA) in dry
THF effected the desired E-ring closure with concomitant
demethylation and provided secomorphinan 8.12 Dechlorination and
Swern-oxidation furnished ketone 9, which was protected as the
ethylene ketal 10 using Chan's method.13 Finally, 10 was transformed
into dihydrocodeinone as previously described,! employing benzylic
bromination / dchydro-bromination followed by Parker-Focas
piperidine ring closure.2¢

As an alternative to the epoxidation, we investigated the activation of
the double bond with a reversibly attacking electrophile, such as
bromine (Scheme 5). Indeed, treatment of 6 with 1.1 equivalents Brp
afforded 15. This dealkylating bromoetherification bears some
resemblance to Fraser-Reid's elegant glycosylation method.14
Unfortunately, the hindered secondary bromide 15 could not be
converted to the desired ketone 16 as yet.

MeO Cl

60 °C (61 %)
Br

15

Scheme 5

In conclusion, we have presented a new variant of our phenanthrenone
strategy for the synthesis of morphine alkaloids. Although the studies
described herein were conducted in the racemic series, optically pure
opiates could easily be prepared in this fashion, since 1 and 3 can be
resolved by chromatography on cellulose triacetate! and porcine
pancreatic lipase mediated kinetic resolution,!5 respectively. The
applicability of the Eschenmoser-Claisen rearrangement to the synthesis
of highly congested stereocenters was demonstrated, and novel ring
closures of methyl pentenyl ethers were developed. Studies directed
towards the total synthesis of hasubananel® and amaryllidaceae
alkaloids based on our previous results are well underway in our
laboratories.
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