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Introduction

We have previously described an overlap in the causative genes
for aneurysms and dissections in various distributions in the
human body. Specifically, we have described the overlapping
genes known or suspected to be involved in the following
pairings, (1) aneurysms of the thoracic aorta and the abdomi-
nal aorta,’ (2) aneurysms of the thoracic aorta and intracranial
aneurysms (ICAs), and (3) aneurysms of the thoracic aorta and
spontaneous coronary artery dissections (SCADs).?

Our primary reports on those aneurysm pairings have
been previously published separately. In this review paper, we
present these findings succinctly in a single report, unifying
the observations for an overall assessment throughout the
body, and making the overlaps available in a single publication.
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The common genetic underpinnings of thoracic aortic aneurysms and aneurysms and
dissections of several other major arterial circuits have been described in the literature.
These include thoracic and abdominal aortic aneurysms, thoracic and intracranial
aneurysms, thoracic aortic aneurysms, and spontaneous coronary artery dissections.
In this study, we provide a unified report of these observations and investigate any
genetic commonality between the above four arterial circulations.

In this report, we additionally examine whether there is
any gene commonality between all four arterial circulations
in the body: thoracic aorta, abdominal aorta, intracranial
arteries, and coronary arteries.

The Venn Diagram that we produce shows all overlaps
visually. In our narrative specification of overlap between
specific distributions, we pinpoint exclusively those overlaps
between the zones being compared (and no others).

Results

We found significant overlap between the genes responsible
for thoracic aortic aneurysms (TAAs), abdominal aortic
aneurysms (AAAs), and ICAs, as well as SCAD. The specific
commonalities are listed in =Fig. 1.
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Fig.1 Venn diagram combining the genetic overlap of TAA, AAA, SCAD, and ICA. AAA, abdominal aortic aneurysm, ICA, intracranial aneurysm,
SCAD, spontaneous coronary artery dissection; TAA, thoracic aortic aneurysm.

Thoracic Aortic Aneurysm, Intracranial Aneurysm,
Abdominal Aortic Aneurysm, and Spontaneous Coronary
Artery Dissection

The genes found to impact all four disorders are linked to
syndromes previously associated with TAA, such as Ehlers-
Danlos syndrome (COL3AT1), Marfan’s syndrome (FBN1), and
Loeys-Dietz syndrome (SMAD3, TGFBR1, TGFBR2). Lysyl oxi-
dase (LOX) is also involved in the pathophysiology of all four
arterial circuit disorders; this gene affects the cross-linking
of elastin and collagen in the extracellular matrix."* Low-
density lipoprotein receptor-related protein 1 (LRP1), which
is linked to endocytosis and intracellular signaling, is associ-
ated with atherosclerosis."? The elastin (ELN) gene involves
genetic deletions in Williams—Beuren syndrome."->® It can
be observed that several syndromes associated with an

increased risk of TAA also involve genes that increase the
risk for other arterial vascular disorders. Furthermore, genes
related to the extracellular matrix and atherosclerosis can be
found in all four arterial circuit diseases.

Thoracic Aortic Aneurysm, Intracranial Aneurysm, and
Spontaneous Coronary Artery Dissection

Genes involved in the mutual development of TAAs, ICAs, and
SCAD include collagen genes (COL1A2, COL5A1, and COL5A2),
smooth muscle myosin heavy chain 11 (MYH11), MYLK (Ca®*/
calmodulin [CaM]-dependent myosin light chain (MLC) ki-
nase),? TGF-B type II receptor (TGFB2),’ notch homolog 1
(NOTCH1), and Talin 1 (TLNI).2 These genes are responsible
for linking the actin cytoskeleton to the extracellular matrix and
their downregulation is known to weaken the vascular wall.’
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Thoracic Aortic Aneurysm, Abdominal Aortic Aneurysm,
and Intracranial Aneurysm

Mutations in SMAD2, involved in TGF-p signaling,® a TGF-B 3
ligand (TGFB3), causing a syndromic type of aneurysm
associated with Loeys-Dietz syndrome,® and ankyrin repeat
domain 44 (ANKRD44), involved in endocytosis,' produce
TAAs, AAAs, and ICAs.

Thoracic Aortic Aneurysm and Spontaneous Coronary
Artery Dissection

Hyperpolarization-activated pacemaker current channel 4
(HCN4), involved in the electrical conduction of the sinoatrial
node but additionally responsible for structural cardiac
abnormalities,’® and methionine adenosyltransferase IIA
(MAT2A), part of the DNA repair pathway,'' were found to
be affected in TAAs and SCAD.

Thoracic Aortic Aneurysm and Abdominal Aortic
Aneurysm

The only genes found to be involved in both TAAs and AAAs
were tissue inhibitor of metalloproteinase 1 (TIMP1) and
protein kinase cyclic guanine monophosphate-dependent 1
(PRKG1). PRKG1 is known to be involved in nonsyndromic
hereditary TAAs and is part of the nitric oxide pathway leading
to vasodilation.®'2 Of the TIMP subtypes, only TIMP1 was
found to be associated with both TAAs and AAAs, as TIMP3 is
singularly involved in the development of TAAs.

Spontaneous Coronary Artery Dissection and Intracranial
Aneurysm

There was an extensive overlap between the genes involved
in the pathophysiology of SCAD and ICAs. We found overlap
in ADAMTSL4, suspected to cause early termination of pro-
tein-synthesis and subsequent nonsense-related decay,'?
collagen IV (COL4A2)' and XVIII (COL18A1), associated
with Knobloch syndrome,15 GLI3, T-box transcription factor
(TBX2), and yin yang 1 (YY1)-associated protein 1 (YY1AP1)
thought to be involved in TGF-B-dependent cell proliferation
and signaling,'® SORBS2, part of the sarcomeric Z-line and
causing a reduction in myocytes,'” ATP-binding cassette
subfamily C member 6 (ABCC6) involved in a connective
tissue disorder due to elastin degradation,'® genes involved
in autosomal dominant polycystic kidney disease (APDKD +
A3, PKD1, and PKD2),'®1% ARNTL, a vascular smooth muscle
cell proliferation gene,'® histone deacetylase 9 (HDAC9)
leading to increased tunica media calcification and de-
creased contractile protein expression,'® LMX1B, associated
with Nail-patella syndrome,? latent TGF-b-binding protein
2 (LTBP2)," nuclear factor of activated T cells 4 (NFATC4),
peptidyl-glycine a-amidating monooxygenase (PAM),'®
PHACTR1, enhancing the upstream gene for endothelin 1,'®
PTGIR, associated with fibromuscular dysplasia,> SEC24B,
involved in the export of collagen,16 SRY-Box transcription
factor 9 (S0X),'® and TSR1 (ribosome maturation factor).'®

Abdominal Aortic Aneurysm and Intracranial Aneurysm
Only one gene, retinoblastoma-binding protein 8 (RBBPS),
was found to affect both AAAs and ICAs, but not interact with
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the pathophysiology of the other vascular pathologies, which
is part of the DNA repair pathway.'"-?!

Intracranial Aneurysm

Genes involving the cell cycle or the vascular endothelium
appear only to be involved in the development of ICAs.
Specific genes found are cyclin-dependent kinase inhibi-
tor-2B-antisense RNA 1 (CDKN2B-AS1), a long noncoding
RNA, which was shown to be involved in the pathogenesis of
cerebral infarctions,?? cyclin M2 (CNNM2), with increased
expression being correlated to a higher risk of ICA forma-
tion,?"23 HDAC9, which decreases transcription of estrogen
receptors,?* PCNT, involved in microtubule nucleation and
found to bind another gene, PKD2, increasing the risk for
ICAs,2>26 Phospholipase C € 1 (PLCE1), involved in cell
messenger synthesis,”’ and StAR-related lipid transfer
(START) domain containing 13 (STARD13-KL), influencing
cell proliferation.?> Genes involved in processes of the vas-
cular endothelium are endoglin 6-bp insertion (6bINS), with
increased expression in familial ICAs,?® ANGPTLS, involved in
endothelial permeability and cell migration,® CDK2B, ring
finger protein 213 (RNF213), possibly involved in the con-
struction of vascular walls,?%-2° S0X17, involved in determin-
ing the differentiation or senescence of progenitor cells,3
and TSHD1, shown to be involved in vascular development
and endothelial cells.?®

Conclusion

Overlap in gene commonalities of four major disorders of the
arterial circuit was identified. Genes uncovered to be re-
sponsible for pathophysiology in all four disorders include
those responsible for the extracellular matrix, the TGF-B
pathways, and lipid metabolism, as well as being associated
with extra aortic syndromic manifestations.

It is noteworthy that the development of ICAs and SCAD
appears to have the most gene commonalities.

AAAs have the lowest gene commonality of all four
disorders evaluated. This could suggest that different path-
omechanisms are involved in the development of AAAs
specifically. Our prior work (see =Fig. 2) has highlighted
the highly different biological behavior between the ascend-
ing and descending aortas, which we consider markedly
“different” organs—in terms of both embryology and clinical
manifestations. The ascending aorta arises from the neural
crest, and the descending and abdominal aortas arise from
the mesoderm. The wall of an ascending aortic aneurysm is
generally smooth, noncalcified, and free from thrombus. In
contradistinction, the wall of an AAA is typically irregular in
contour, heavily calcified, and full of thrombus. In terms of
behavior, the ascending aorta dissects but rarely ruptures
without antecedent dissection. By contrast, the abdominal
aorta rarely dissects but often ruptures without antecedent
dissection.>°

Examining the genetic overlaps among aneurysms in
these four zones (TAA, AAA, ICA, and SCAD) demonstrates
both commonalities and discrepancies and contributes to
our scientific understanding of the diseases and their
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Fig. 2 (A) lllustration from Elefteriades and Farkas (2010) showing the divide of thoracic aneurysms by the ligamentum arteriosum. Illustration
by Rob Flewell. PA, pulmonary artery.31 (B) llustration from Zafar et al (2019) showing the differences in behavior regarding rupture versus
dissection in abdominal and thoracic aortic aneurysms.3 (C) lllustration from Maleszewski (2015) showing the embryologic origin of the

different aspects of the aorta.?

development. We do recommend that a complete assess-
ment of TAA patients include imaging of the abdominal and
intracranial vasculature. We recommend that AAA patients
undergo imaging of the entire thoracic aorta. We recom-
mend that ICA patients undergo imaging of at least the
thoracic aorta (and preferably the abdominal as well). In
this way, specialists in each field (TAA, AAA, and ICA) can
avoid the “tunnel vision” of investigating only their own
special vascular organ, while neglecting possible or even
likely (and potentially lethal) disease in other segments of
the vascular tree.

While SCAD has demonstrated some genetic overlaps, it
tends to occur without aneurysmal dilatation of the under-
lying coronary artery, and we make no specific recommen-
dation for extensive screening (for TAA or AAA) in patients
presenting with SCAD. However, because of the specific
overlap between SCAD and ICA, brain vessel screening may
be recommended.
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