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Abstract Background NFE2L2 (nuclear factor erythroid-2-related factor-2) encodes a basic
leucine zipper (bZIP) transcription factor and exhibits variations in various tumor
types, including lung cancer. In this study, we comprehensively investigated the impact
of simultaneous mutations on the survival of NFE2L2-mutant lung cancer patients
within specific subgroups.
Methods A cohort of 1,103 lung cancer patients was analyzed using hybridization
capture-based next-generation sequencing.
Results The NFE2L2 gene had alterations in 3.0% (33/1,103) of lung cancer samples,
including 1.5% (15/992) in adenocarcinoma and 16.2% (18/111) in squamous cell
carcinoma. Thirty-four variations were found, mainly in exons 2 (27/34). New variations
in exon 2 (p.D21H, p.V36_E45del, p.F37_E45del, p.R42P, p.E67Q, and p.L76_E78de-
linsQ) were identified. Some patients had copy number amplifications. Co-occurrence
with TP53 (84.8%), CDKN2A (33.3%), KMT2B (33.3%), LRP1B (33.3%), and PIK3CA (27.3%)
mutations was common. Variations of NFE2L2 displayed the tightest co-occurrence
with IRF2, TERC, ATR, ZMAT3, and SOX2 (p<0.001). In The Cancer Genome Atlas
Pulmonary Squamous Carcinoma project, patients with NFE2L2 variations and 3q26
amplification had longer median survival (63.59 vs. 32.04 months, p¼0.0459) and
better overall survival.
Conclusions NFE2L2 mutations display notable heterogeneity in lung cancer. The
coexistence of NFE2L2mutations and 3q26 amplification warrants in-depth exploration
of their potential clinical implications and treatment approaches for affected patients.
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Introduction

NFE2L2 (nuclear factor erythroid-2-related factor-2), encod-
ing NRF2, is a crucial transcription factor responsible for
regulating the expression of genes involved in various cellu-
lar processes, such as the antioxidant metabolism, lipid and
iron catabolism, and proteostasis.1 The Cancer Genome Atlas
(TCGA) data reveal that NFE2L2 mutations occur in approxi-
mately 20% of squamous cell carcinoma (SCC).2 Activation of
the NRF2 pathway can provide a significant advantage in
shielding tumor cells from the detrimental effects of oxida-
tive stress.3 Cancer cells that exhibit sustained activation of
NRF2 often acquire a reliance on this pathway and contribute
to the development of malignant phenotypes, ultimately
leading to unfavorable prognoses in cancer patients.4 Accu-
mulating evidence indicates the functional involvement of
NRF2 in the progression and development of nonsmall cell
lung carcinoma (NSCLC).5,6 Satoh et al demonstrated a rela-
tive decrease in the number of tumors with more malignant
characteristics in NRF2 knockout mice, underscoring the
importance of NRF2 in the initiation and progression of
lung cancer.7 Furthermore, NRF2 activation has been associ-
ated with poor treatment response and prognosis in clinical
patients.8 The unfavorable prognosis observed in NFE2L2-
mutant NSCLC has been partially attributed to the inade-
quate response to radiotherapy9 aswell as second- and third-
line chemotherapy.10 This diminished responsiveness is
primarily associatedwith resistancemediated by themutant
Nrf2 pathway.11 Through bioinformatics analysis of NRF2
transcripts in NSCLC cells, a recurring loss of exon 2 or exons
2/3 in NRF2 mRNA was observed as a result of alternative
splicing.12 The deletion of exon 2 presents a sophisticated
mechanism for tumors to enhance NRF2 stability by elimi-
nating its interaction sites—specifically, the DLG and ETGE
motifs—with KEAP1. Additionally, oncogenic signals like
KRAS, BRAF, and MYC activate NRF2 transcription.13

The signaling pathway of NRF2 is tightly regulated by
KEAP1, which acts as a substrate adapter protein for the E3
ubiquitin ligase complex CUL3/RBX1 consisting of human
cullin-3 and human RING box protein 1.14 Extensive research
has demonstrated that the KEAP1-NRF2 pathway exhibits
bidirectional regulatory effects in carcinogenesis. On one
hand, it possesses tumor preventive properties, whereas on
the other hand, it can promote tumor progression.15 Muta-
tions in NFE2L2/KEAP1 have been linked to increased tumor
mutational burden (TMB) and PD-L1 expression, resulting in
improved clinical responses to immunotherapy and favor-
able patient outcomes.16 Additionally, lung adenocarcinoma
patients with co-occurring mutations in NFE2L2 and KEAP1
have shown poorer survival outcomes compared with those
with a single mutation in either gene.17

The PIK3CA gene, located on the q26 region of the long arm
of chromosome 3 (3q26), frequently undergoes activating
mutations or copy number amplifications in lung can-
cer.18–21 PIK3CA is responsible for regulating the phosphati-
dylinositol 3-kinase (PI3K)/Akt signaling pathway, crucial in
governing cell proliferation, adhesion, differentiation, and
motility.22 Activated PI3K signaling leads to increased NRF2

accumulation in the nucleus,23 thereby enhancing various
biological processes, including de novo purine nucleotide
synthesis, glutamine metabolism, and the pentose phos-
phate pathway. The PI3K inhibitor NVP-BKM120 reduces
NRF2 expression in squamous lung cancer cells.24 Diosmetin
selectively induces apoptosis and enhances paclitaxel effica-
cy in NSCLC cells by accumulating reactive oxygen species
through disrupting the PI3K/Akt/GSK-3β/Nrf2 pathway.25

Recent studies have revealed the involvement of NFE2L2 in
DNA repair. There exists a significant association between
NFE2L2mutations and ATR gene expression.26NRF2 interacts
with ATR at DNA damage sites, promoting ATR activation
through its AAD-like domain and thereby facilitating G2 cell
cycle arrest.27 Notably, the ATR gene, a key regulator of the
DNA damage response (DDR), is also located on 3q26.

Indeed, the genetic fitness of tumors is influenced by the
nonadditive contributions of multiple genes within cancer
pathways, underscoring the importance of interactions be-
tween mutations that may signify genetic epistasis.28 In the
context of lung cancer, the concept of epistatic mutation
interactions has garnered substantial support. For example,
in the realm of targeted therapy, the presence of TP53
mutations has been linked to diminished responsiveness to
tyrosine kinase inhibitors and a poorer prognosis in patients
with EGFR-mutated NSCLC.29Additionally, early studies have
demonstrated the mutually exclusive nature of EGFR and
KRASmutations, delineating two subtypes of NSCLC patients
with distinct clinical outcomes.30,31 Regarding immunother-
apy, patients harboring concurrent TP53 and KRASmutations
maypotentially derive greater benefits fromPD-L1 inhibitors
compared with those with a single mutation.32,33 Further-
more, the presence of STK11/LKB1mutations has been shown
to facilitate resistance to PD-1/PD-L1 inhibitors in KRAS-
mutant lung adenocarcinoma (LUAD).34

In this comprehensive investigation, we employed tar-
geted next-generation sequencing analysis on a robust co-
hort comprising 1,103 individuals diagnosed with lung
cancer. Our principal objective centered on the meticulous
exploration of potential deleterious co-occurrences associ-
ated with the NFE2L2 gene within the context of lung cancer.

Patients and Methods

Patients and Specimens
We collected blood and tumor tissue specimens from a cohort
of 1,103 individuals diagnosed with lung cancer. These
patients received treatment at multiple clinical centers from
January 2020 to July 2022. Prior to specimen collection, all
participants provided written informed consent. The study
protocol was approved by the Ethics Committee of the First
Hospital of Hebei Medical University, ensuring compliance
with ethical guidelines for research involving human subjects.
During the selection process, patients with histopathological
evidence of either lung adenocarcinoma (LUAD) or lung squa-
mous cell carcinoma (LUSC) and who underwent standard
treatment were included. Patients with other types of cancers
showing multiple malignant tumor cell components (such as
adenosquamous carcinoma) were excluded.
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Data Collection
High-quality total DNA was extracted from tissues using a
commercial Universal Columnar Genome Extraction Kit
(Kangwei, China). Sample Purification Beads (Illumina)
were employed to purify fragmented DNA. To generate
DNA fragments of 180 to 280bp, hydrodynamic shearing
was conducted using the M220 Focused-ultrasonicator
(Covaris) on 0.6 g of genomic DNA. Subsequently, adapter-
ligated libraries were generated using the TruSeq Nano DNA
Sample Prep Kits (Illumina). For target enrichment, the
constructed libraries were hybridized to custom-designed
biotinylated oligonucleotide probes (Roche NimbleGen) cov-
ering 364 cancer-related genes (►Supplementary Table S1,
available in online version only). Subsequently, the index-
coded library samples were clustered on an Illumina cBot
Cluster Generation System, and the DNA libraries were
sequenced using an Illumina HiSeq 2000 system. Genomic
alterations, including single-nucleotide variants, small inser-
tions and deletions (Indels), copy number alterations, and
gene fusions/rearrangements, were detected with GATK,
MuTect (version 1.1.4) and BreakDancer, respectively. For
quality control, tumor tissue somaticmutationswere refined
using the following criteria: (1) variants with a frequency of
<1% in the 1000 Genomes Project (https://www.internatio-
nalgenome.org/) and the Exome Aggregation Consortium;
(2) not present in paired germline DNA from peripheral
blood lymphocytes; and (3) detected in five or more high-
quality reads and without paired-end reads bias.

Data related to the TCGA cohorts were downloaded from
cBioPortal (http://cbioportal.org). In addition, the data access
period was June 2022. Briefly, we collected data on patients
with lung cancer from this online database, including molec-
ular characteristics (somatic mutations, copy number varia-
tion [CNV], and TMB), clinical information (gender, age,
pathology, and smoking history), and overall survival (OS).

Statistical Analysis
The Kaplan–Meier curves were used to estimate OS, and
statistical significancewas calculated using the log-rank test.
Multivariate Cox analysis was used to examine the associa-
tion between OS and genomic features, as well as clinical
phenotypes. The related estimates were reported as hazard
ratio and 95% confidence interval. For all the analysis, a p-
value below 0.05 was considered significant. Statistical anal-
yses were carried out using R software.

Results

The Prevalence and Distribution of NFE2L2 Mutations
with Lung Cancer
We conducted a retrospective analysis of sequencing data
from 1,103 lung cancer patients between 2020 and 2022.
The clinical characteristics of these patients were listed
in ►Table 1. Among the cohort of patients, a total of 33
individuals with NFE2L2 mutations were identified. Nota-
bly, all of these individuals were male, with a median age of
66 years (range: 38–87) (►Supplementary Table S2, avail-
able in online version only). In comparison to patients with

wild-type NFE2L2, those carrying NFE2L2 mutations exhib-
ited a slightly higher average age (p¼0.029). The prevalence
of NFE2L2 mutations is summarized in ►Fig. 1A, indicating
a relatively high mutation frequency of 16% in LUSC. Unex-
pectedly, a lower mutation frequency of 3% was observed in
LUAD, which is still relatively high when compared with
previous reports.16,35 Furthermore, NFE2L2 mutations
showed no significant correlation with disease stage (I/II
vs. III/IV, p¼0.681), primary lesion location (left lung vs.
right lung, p¼0.944), or smoking history (ever vs. never,
p¼0.164). Aberrations in NFE2L2 commonly arise from
somatic mutations or CNVs. In our study, we identified a
total of 34 NFE2L2 variations, with 27 located in exon 2, 4 in
exon 5, 2 in exon 3, and 1 in exon 4 (►Fig. 1B). Most of them
occur in DLG or ETGE motifs, and the majority of them lead
to the activation of the NRF2 pathway in cancer.36 Addi-
tionally, we identified three cases of copy number amplifi-
cation variant of NFE2L2 in LUSC, which also resulted in
activation of the NRF2 pathway. Our investigation further
revealed the presence of several previously unreported
mutations within exon 2 of the NFE2L2 gene. These novel
mutations include D21H, V36_E45del, F37_E45del, R42P,
E67Q, and L76_E78delinsQ.

Table 1 Clinical characteristics of nonsmall cell lung carcinoma
patients with NFE2L2 mutations and NFE2L2 wild type

Patient
characteristics

NFE2L2 mutated
(N¼ 33)

NFE2L2 wild-type
(N¼ 1,070)

Age (mean� SD) 65.97� 9.61 61.93� 10.51

Gender

Male 33 560

Female 0 510

Type

LUSC 18 93

LUAD 15 977

Smoking status

Ever 14 316

Never 19 752

NA 0 2

Stage

I 9 393

II 9 227

III 14 287

IV 1 132

NA 0 31

Site

Left lung 13 444

Right lung 20 624

NA 0 2

Abbreviations: LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; NA, not applicable; SD, standard deviation.

Global Medical Genetics Vol. 11 No. 2/2024 © 2024. The Author(s).

Co-mutations of NFE2L2 in Nonsmall Cell Lung Carcinoma Liu et al.152

https://www.internationalgenome.org/
https://www.internationalgenome.org/
http://cbioportal.org


Identification of NFE2L2 Co-occurring Mutations
Based on the genomic data obtained from the cohort of 33
patients, we further elucidated the comprehensive land-
scape of NFE2L2 gene alterations (►Fig. 2A). Our findings
indicated that individuals harboring NFE2L2 mutations also
exhibited other actionable or driver mutations, with TP53
being the most frequently mutated gene (84.8%), followed
by CDKN2A (33.3%), KMT2B (33.3%), LRP1B (33.3%), and
PIK3CA (27.3%). Subsequently, a set of genes whose alter-
ations showed the most pronounced co-occurrence with
NFE2L2 were identified (►Fig. 2B). This gene set (IRF2, TERC,
ATR, ZMAT3, and SOX2) exhibited significant co-occurrence
with NFE2L2 (p<0.001). Remarkably, a majority of these
genes are situated in the q26 region of the long arm of
chromosome 3 (3q26), which is frequently amplified in
TCGA LUSC cohort (►Fig. 2C). Furthermore, our study
revealed that the amplification of four genes (PIK3CA,
SOX2, TERC, ZMAT3) located on chromosome 3q26 was
also found to co-occur with NFE2L2 (►Fig. 2D). Previous
studies have suggested that NFE2L2 is a poor prognosis
marker in lung cancer.8,37 Thus, we further investigated
whether the co-occurrence of NFE2L2 and 3q26 amplifica-
tion defines a molecular subset of lung cancer with unique
clinical outcomes.

Overall Survival Features of Lung Cancer Carrying Co-
mutations
In order to determine whether the co-occurrence of NFE2L2
mutationsand3q26amplificationhasadifferent impacton the

prognosis of lung cancer patients than what has been previ-
ously reported,weconductedananalysisof theTCGAPan-Lung
Cancerdatabase(http://cbioportal.org/msk-impact).23Thisda-
tabase includes data from 1,144 patients with various types of
lung cancer. After excluding patients without survival data, we
ultimately analyzed 982 patients to assess survival. Our analy-
sis revealed that in the cohort of patients with NFE2L2 muta-
tions, those who carried 3q26 amplification had significantly
longer survival than thosewho did not carry the amplification
(►Fig. 3A,medianoverall survival: 55.23vs. 32.04,p¼0.0166).
However, within the subgroup of patients lacking NFE2L2
mutations, our analysis did not identify any noteworthy dis-
parity in survival outcomes between individuals with and
without 3q26 amplification (►Fig. 3B).

Risk of Death of Lung Cancer Carrying Co-mutations
Given the variable prevalence of NFE2L2 mutations in LUSC
and LUAD, it is essential to investigatewhether the difference
in prognosis associatedwith the presence or absence of 3q26
amplification in NFE2L2-mutated patients is caused by dis-
tinct clinical features. Multivariate Cox regression analyses
were conducted to identify potential predictors of survival in
the TCGA Pan-Lung Cancer cohort. Among the molecular
characteristics and clinical information examined, the pres-
ence or absence ofNFE2L2mutations co-occurringwith 3q26
amplification was the only significant predictor of OS
(►Fig. 4A). In addition, considering that previous studies
have mostly reported NFE2L2 as a marker of poor prognosis
in pan-cancer or LUAD,8,37,38 we separately analyzed OS in

Fig. 1 The prevalence and distribution of NFE2L2 mutations in Chinese NSCLC. (A) The prevalence of NFE2L2 mutations in patients with LUAD
and LUSC. (B) The distribution of NFE2L2 mutations are shown on protein schematics. Symbols indicate the mutation type and location.
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; NSCLC, nonsmall cell lung carcinoma.
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Fig. 2 Characteristics of co-occurring gene mutations with NFE2L2. (A) Co-mutation genes of NFE2L2 in patients with NSCLC. (B) Volcano
plot indicating key co-occurring and mutually exclusive alterations associated with NFE2L2 status in the Chinese NSCLC. (C) Co-occurrence
pattern of TERC, ZMAT3, and SOX2 in the TCGA cohort. (D) Heatmap illustrating the co-occurrence pattern of NFE2L2 and genes located at
chromosome 3q26. �p< 0.1, �� p< 0.05, ���p< 0.01. NSCLC, nonsmall cell lung carcinoma; TCGA, The Cancer Genome Atlas.
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TCGA LUSC patients with only NFE2L2 mutations versus
those with coexisting mutations. Our findings suggest that
the synergistic effect of 3q26 amplification on NFE2L2 still
holds true, as patients carrying coexisting mutations
(CoMut) had better prognoses than those with only
NFE2L2 mutations (►Fig. 4B). These results confirmed that
the co-occurrence of NFE2L2 and 3q26 defined a molecular
subset of lung cancer with better clinical outcomes com-
pared with NFE2L2 alone, and this difference is not related to
clinical features.

Discussion

NFE2L2mutations commonly coincidewith additional driver
mutations across diverse cancer types, such as LUSC, head
and neck cancer, bladder cancer, and esophageal cancer.
Consequently, the inhibition of the NRF2 pathway may exert
an epistatic interactionwith other driving variants, resulting
in the suppression of cancer growth.39 The primary objective

of our investigation was to examine NFE2L2, given its high
frequency of genetic alterations in lung cancer and its
established correlation with adverse clinical outcomes. Fur-
thermore, NFE2L2-mutated cancers often display concurrent
alterations, and ongoing clinical trials (NCT05275673,
NCT04518137) are evaluating NFE2L2 as a potential thera-
peutic target. This offers a unique opportunity to identify key
prognostic markers and potential targets for future clinical
interventions. Furthermore, our investigation unveiled a
significant co-occurrence of NFE2L2 with the amplification
of four genes (PIK3CA, SOX2, TERC, ZMAT3) located on chro-
mosome 3q26, as indicated by the examination of co-muta-
tion correlation patterns.

CNVs represent recurrent genetic alterations commonly
identified in human tumors. The amplification of the long
arm of chromosome 3 (3q) was initially documented nearly
two decades ago in head and neck squamous cell carcinoma
(HNSCC).40 Subsequent evidence has demonstrated that
3q26 amplification is a frequent occurrence in malignant

Fig. 3 Survival analyses in the TCGA cohort. (A) Comparison of overall survival between chromosome 3q26 amplification (3q26 amp) versus
non-3q26 amplification (non-3q26 amp) tumors in NFE2L2 mutated (NFE2L2 mut) subcohort. (B) Comparison of overall survival between
chromosome 3q26 amplification (3q26 amp) versus non-3q26 amplification (non-3q26 amp) tumors in NFE2L2wild-type (NFE2L2wt) subcohort.
TCGA, The Cancer Genome Atlas.

Fig. 4 Multivariate Cox regression analysis of overall survival (OS). (A) Multivariate Cox regression analysis for OS in the TCGA Pan-Lung
Cancer cohort. (B) Comparison of OS in the TCGA LUSC subcohort, including coexisting mutations (CoMut), chromosome 3q26 amplification
only (3q26 amp), NFE2L2 mutation only (NFE2L2 mut), and both wild-type (WT) cases. LUSC, lung squamous cell carcinoma; TCGA, The Cancer
Genome Atlas.
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tumors and is potentially associated with tumor invasive-
ness. This suggests that 3q26 amplification plays a substan-
tial functional role in the transition from premalignancy to
malignancy in several tumor types, including laryngeal
squamous cell carcinoma, HNSCC, and cervical cancer. These
tumor types have been consistently observed to exhibit 3q26
amplification.41–43

TheSOX2protein is a transcription factor that plays a crucial
role in regulating the pluripotency of embryonic stem cells as
well as in the morphogenesis and homoeostasis of tracheo-
bronchial epithelia. The current hypothesis suggests that SOX2
is involved in various stages of invasive carcinoma develop-
ment from normal epithelium, driving the expression of
squamous histology markers such as P63. Studies have dem-
onstrated that silencing SOX2 expression results in apoptosis,
reduced tumorigenicity, and decreased stemness in lung can-
cer cells.44–46 Amplification of the SOX2 gene has been identi-
fied as a driver of its expression in various SCCs, such as lung
and esophageal cancers.47,48Researchers have demonstrated a
correlation between heightened levels of SOX2 expression and
an unfavorable prognosis in both lung adenocarcinoma49 and
small cell lung cancer.46 Paradoxically, inNSCLC patients, SOX2
expressionhas been linked to better clinical outcomes, indicat-
ing that complex multigenic interactions are involved in driv-
ing aggressive behavior and unfavorable clinical outcomes in
tumors with 3q26 amplification.50

Another gene that has robust evidence supporting its
driving role in 3q26 amplification tumors and other tumor
types is PIK3CA. It is located on the 3q26 genomic region,
downstream of SOX2, and encodes the p110α protein, which
is the catalytic subunit of PI3K. PIK3CA is responsible for
regulating the PI3K/Akt signaling pathway, which is critical
for cell survival in human cancer.22 Notably, there is a higher
prevalence of genetic alterations in PIK3CA in LUSC compared
with LUAD.18,19 Okudela and colleagues demonstrated
PIK3CA copy number gains by FISH in 43% of Japanese
LUSC patients. Similarly, Ji and coworkers noted amplifica-
tion by PCR in 42% of Chinese LUSC patients.20,21 Further-
more, a study conducted by Best et al elucidated the
synergistic interplay between the KEAP1/NRF2 and PI3K
pathways, which contributes to the development of NSCLC
with an altered immune microenvironment.51 The research-
ers observed that NRF2 exhibits oncogenic activity down-
stream of the PI3K pathway. Intriguingly, they also
discovered that prolonged activation of NRF2 under homeo-
static conditions does not trigger the development of malig-
nant pathologies. Moreover, our investigation revealed a
notable co-occurrence between NFE2L2 and the amplifica-
tion of PIK3CA, which is located on chromosome 3q26.
However, further large-scale follow-up studies are war-
ranted to determinewhether this co-mutation has an impact
on the prognosis of lung cancer patients.

ATR serves as a key regulator of the DDR in mammary
cells, exerting a master control over this process. In cells
experiencing DNA double-strand breaks, crosslinks, or rep-
lication stress, the replication protein A (RPA) envelops the
single-stranded DNA (ssDNA) present at the sites of DNA
damage. ATR effectively detects and recognizes this ssDNA

coated with RPA through its interaction with the protein
ATRIP.52 Recruiting ATR/ATRIP to RPA-coated ssDNA alone is
insufficient to achieve optimal activation; additional pro-
teins are required as activators. NRF2 has emerged as a
potential activator of ATR, playing a crucial role in maintain-
ing genomic stability by facilitating ATR activation and
promoting G2 cell cycle arrest.27 We found that alterations
of ATR also showed significant co-occurrence with NFE2L2.
Further investigation is required to describe whether the
abnormal activation of NFE2L2 can compensate for the
impairment of homologous recombination repair caused
by ATR deficiency and effectively preserve genome stability.

TERC encodes thehuman telomeraseRNA, and its increased
gene expression is frequently detected in various human
cancers.53 The expression of TERCwas differentially regulated
during the oncogenesis process in the histological subtypes of
lung carcinoma, with higher TERC expression observed in
LUSC.54 Recent studies have reported a positive feedback
regulation betweenTERC and the PI3K/Akt pathway, operating
independently of telomerase activity in human fibroblasts to
control cell proliferation.55 The amplification of TERC and its
co-occurrence with NFE2L2 in our study suggests a potential
mutual synergistic effect between TERC and NFE2L2 through
the PI3K/Akt pathways. ZMAT3 (Zinc Finger Matrin 3), encod-
ing a zincfinger RNA-binding protein, is a crucial downstream
tumor suppressor of the tumor protein p53. Its expression is
highly dependent on p53 in KRASG12D-driven LUAD, and simi-
lar to p53, ZMAT3 inhibits LUAD growth by impeding prolifer-
ationwithout inducingapoptosis.56 Interestingly,weobserved
that ZMAT3 amplification is associatedwith a better prognosis
in patients with NFE2L2 mutations. However, no such differ-
ence was observed in patients with wild-type NFE2L2. We
speculate that ZMAT3 may play a positive tumor-suppressive
role in the progression of NFE2L2-mutated tumors. Neverthe-
less, these speculations need validation in future in vitro or in
vivo studies.

A notable observation in our study is that all 33 patients
with NFE2L2mutations were male. Consistent with previous
investigations, where among 262 patients, all 6 individuals
with NFE2L2 mutations were also male.35 In this study, all 6
patients were smokers with LUSC. Prolonged and repetitive
exposure of the respiratory tract to cigarette smoke typically
triggers the activation of cellular defense mechanisms, while
the substances deposited induce a multifaceted adaptive
response aimed at restoring tissue homeostasis. A previous
study suggests that the activation of the transcription factor
NRF2 is considered a prominent characteristic of this defense
system, acting as the master regulator of the cellular antiox-
idant response.57 Besides NFE2L2’s involvement in antioxi-
dant metabolism related to smoking, the precise mechanism
underlying the higher propensity for NFE2L2 mutations in
males remains currently unclear.

This study reveals a notable disparity in the frequency of
NFE2L2 gene alterations between lung adenocarcinoma and
SCC, offering crucial insights into the molecular character-
istics of distinct lung cancer subtypes. This contributes to a
better comprehension of the molecular classification of lung
cancer, providing valuable guidance for personalized
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therapeutic approaches. In the TCGA Pulmonary Squamous
Carcinoma project, patients harboring NFE2L2 mutations
along with 3q26 amplification exhibit prolonged median
survival and superior OS. This preliminary evidence under-
scores the potential prognostic value of NFE2L2mutations in
assessing the outcomes of lung cancer patients. For individ-
uals concurrently carrying NFE2L2 mutations and 3q26
amplification, further exploration of the prospective clinical
applications within this subset is warranted. This may in-
volve the development of more personalized treatment
strategies tailored to the unique characteristics of this sub-
group. In summary, this study not only sheds light on the role
of NFE2L2mutations in lung cancer but also provides a novel
perspective and insights into their potential therapeutic
applications. Our study has several limitations that need to
be acknowledged. Firstly, the compared subgroups had
different sizes, which could introduce a potential bias in
the analysis. Additionally, the lack of follow-up data limited
our ability to assess long-term outcomes. To address these
limitations, we utilized the TCGA survival database to com-
plement our analysis and examine the association between
genetic mutations and prognosis. However, it is important to
note that discrepancies between our dataset and the TCGA
database could introduce bias and restrict the generalizabil-
ity of our findings to the Chinese population. Furthermore,
due to the low occurrence rate of the co-occurrence in LUAD,
our studymay have had insufficient statistical power to fully
evaluate the potential impact of this co-occurrence on prog-
nosis in LUAD patients.

Conclusions

Our findings demonstrate that the co-occurrence of NFE2L2
and 3q26 is observed in approximately 3% of NSCLC cases.
Notably, patients with NFE2L2/3q26 mutations show a more
favorable prognosis compared with those with sole NFE2L2
mutations without 3q26 amplification. As a result, further
investigations should focus on elucidating whether patients
with NFE2L2 mutations may benefit from more aggressive
upfront therapy when compared with individuals harboring
NFE2L2/3q26 mutations.
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