
Tight Junction Proteins as Therapeutic Targets to Treat
Liver Fibrosis and Hepatocellular Carcinoma
Antonio Saviano, MD, PhD1,2,3 Natascha Roehlen, MD, PhD4,5 Thomas F. Baumert, MD1,2,3,6

1 Inserm, U1110, Institute of Translational Medicine and Liver Disease,
Strasbourg, France

2University of Strasbourg, Strasbourg, France
3Service d’hépato-gastroentérologie, Pôle Hépato-digestif, Institut-
Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg,
Strasbourg, France

4Department ofMedicine II, Gastroenterology, Hepatology, Endocrinology
and Infectious Diseases, Freiburg University Medical Center, Faculty of
Medicine, University of Freiburg, Freiburg, Germany

5Berta-Ottenstein-Programme, Faculty of Medicine, University of
Freiburg, Freiburg, Germany

6 Institut Universitaire de France, Paris, France

Semin Liver Dis

Address for correspondence Thomas F. Baumert, MD, Inserm U1110,
ITM, 3 rue Koeberlé, Strasbourg 67000, France
(e-mail: thomas.baumert@unistra.fr).

Keywords

► Claudins
► monoclonal

antibodies
► therapeutic target
► signaling
► cell plasticity

Abstract In the last decade tight junction proteins exposed at the surface of liver or cancer cells
have been uncovered as mediators of liver disease biology: Claudin-1 and Occludin are
host factors for hepatitis C virus entry and Claudin-1 has been identified as a driver for
liver fibrosis and hepatocellular carcinoma (HCC). Moreover, Claudins have emerged as
therapeutic targets for liver disease and HCC. CLDN1 expression is upregulated in liver
fibrosis and HCC. Monoclonal antibodies (mAbs) targeting Claudin-1 have completed
preclinical proof-of-concept studies for treatment of liver fibrosis and HCC and are
currently in clinical development for advanced liver fibrosis. Claudin-6 overexpression is
associated with an HCC aggressive phenotype and treatment resistance. Claudin-
6mAbs or chimeric antigen receptor-T cells therapies are currently being clinically
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Lay Summary

Liver fibrosis and cancer are serious diseases with limited
treatment options and poor outcome. Recent research has
revealed that proteins relevant in cell–cell contact are also
expressed on the surface of liver and cancer cells and can
contribute to the disease. For example, Claudin-1 and
Occludin mediate infection of hepatocytes by hepatitis C
virus—amajor cause of liver disease and cancer worldwide.
Claudin-1 has been shown to play a function role in liver
fibrosis and cancer development. Claudin-1 has been
shown to be a target to treat liver fibrosis and cancer using
monoclonal antibodies. In liver cancers, Claudin-6 over-
expression is associated with aggressive behavior and
treatment resistance. Clinical investigation is currently
underway for CLDN-6 overexpressing tumors
using Claudin-6 targeting therapies. In conclusion, target-
ing exposed Claudins offers a novel clinical opportunity for
the treatment of liver fibrosis and cancer.

Liver fibrosis and cancer are major global health issues with
increasing incidence due to prevalent risk factors including
alcohol consumption, metabolic syndrome, and steatotic
liver disease SLD.1 The most prevalent chronic liver disease,
metabolic dysfunction-associated steatotic liver disease
MASLD, affects roughly 30 of the global population, and
has shown an increase of 50.4 between 1990 to 2006 and
2016 to 2019.2 MASLD and its inflammatory and aggressive
form, metabolic dysfunction-associated steatohepatitis
MASH, significantly contribute to liver fibrosis, which is
the most significant risk factor for liver cirrhosis and decom-
pensation. Research analyzing the natural progression of
MASH patients indicates that approximately 20 of patients
with F3 fibrosis develop cirrhosis or liver-related complica-
tionswithin 2 years.3Developing treatments for liver fibrosis
has proven challenging. Clinical studies of compounds in
late-stage development, such as glucagon-like peptide-1
GLP-1 and thyroid hormone receptor- agonists, have shown
effects on metabolic and inflammatory endpoints, with
limited reduction in liver fibrosis, particularly in patients
with advanced fibrosis.4–6

Liver fibrosis is the key risk factor for liver cancer, which
represent the third leading cause of cancer-related deaths in
the United States. The available treatment options for hepa-
tocellular carcinoma (HCC), which accounts for more than

80% of primary liver cancers, are inadequate. Curative treat-
ment is available for only a small number of patients, and
tumor recurrence often occurs after treatment.Moreover, no
adjuvant treatment has been authorized yet. Palliative sys-
temic therapy can only be recommended to advanced-stage
patients with preserved liver function.7 Therefore, innova-
tive therapies targeting liver fibrosis and cancer remain an
unmet medical need.

Tight junction (TJ) proteins have emerged as targets for
chronic diseases and cancers, such as gastric cancer.8 TJ
proteins not only form intercellular junctions but are also
exposed at the cell surface outside the TJs in a nonjunctional
form (►Fig. 1). They have shown to play an important role in
various liver diseases comprising hepatitis C, liver fibrosis,
and HCC and a large body of data show that nonjunctional TJ
proteins are therapeutic targets for these conditions.

In this article, we review recent advances and perspec-
tives on TJ proteins focusing on Claudins as therapeutic
targets for liver disease and HCC.

Functional Role of Tight Junction Proteins
Expressed in and Outside the Junctions in
the Biology of the Liver

TJs are intercellular junctions responsible for regulating
paracellular transport and maintaining cell polarity. They
are formed by transmembrane and cytosolic proteins.9

Notably, transmembrane proteins forming TJs are also
expressed outside of the junction where they participate in
signal transduction, intercellular communication,10–12 and
can influence cellular processes such as cell proliferation,
migration, and differentiation.13,14Nonjunctional TJ proteins
comprise several proteins, including Claudins (CLDNs), TJ-
associated marvel proteins like occludin (OCLN), tricellulin,
Marvel D3, junctional adhesion molecules (JAMs), and
angulins. Junctional and nonjunctional protein pools are
interconnected. Studies on the dynamic behavior of TJ have
shown that TJ proteins are highly mobile, constantly remod-
eling and exchanging between the junctional and nonjunc-
tional membrane and intracellular pools.15 Junctional and
nonjunctional TJs proteins have been shown to transmit
signals through various pathways to regulate cell differenti-
ation and proliferation. These pathways include the Hippo-
pathway transcriptional coactivators YES-associated protein
1 (YAP1) and transcriptional coactivator with PDZ-binding
motif (TAZ),16–18 AKT–mTOR9,19 and JUN N-terminal kinase
(JNK) mitogen-activated protein kinase (MAPK), and extra-
cellular signal–regulated kinase (ERK) signaling path-
ways.20–22 It has been suggested that these pathways play

investigated for Claudin-6 overexpressing tumors. In conclusion, targeting Claudin
proteins offers a novel clinical opportunity for the treatment of patients with advanced
liver fibrosis and HCC.
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important roles in controlling cellular functions. Moreover,
both junctional and nonjunctional TJ proteins engage in
crosstalk with focal adhesion, such as between integrins
and claudins.23–26 These interactions result in a complex
interaction system with neighboring cells and extracellular
matrix, which further modifies cell proliferation and
migration.9

In the liver, TJ proteins are predominantly expressed in
epithelial cells, specifically hepatocytes and cholangio-
cytes. CLDNs are the most prevalent and abundant TJ
proteins. In hepatocytes, junctional TJ proteins establish
the blood–biliary barrier, which separates the apical biliary
pole from the basolateral membrane near the sinusoidal
space. In cholangiocytes, junctional TJ proteins secure the

bile ducts and canals and facilitate bile production and
modification of composition.27 In both types of cells, non-
junctional proteins are expressed at basolateral membrane
and play a significant role in signal transduction and cell–
matrix interactions. Recent studies have also shown that TJ
proteins are also expressed in liver mesenchymal cells in
their nonjunctional form and are upregulated during in-
flammatory processes.28,29 Exposed, nonjunctional, TJ pro-
teins are accessible to pathogens (such as hepatitis C virus)
or drugs (such as antibodies) compared with their junc-
tional counterparts. Indeed, TJ proteins exposed outside
the TJs at the cell surface play a significant role in the
pathogenesis of liver diseases, including viral infection,
liver fibrosis, and cancer.

Fig. 1 Fig. 1 Tight junction (TJ) structure and biology. TJs are formed by transmembrane proteins belonging to the claudin family (CLDNs), TJ-
associated marvel proteins (TAMPs), blood vessel epicardial substance (BVES) and junctional adhesion molecules (JAMs). The transmembrane
proteins are connected to the actin filaments and microtubules by the junctional plaque, which contains several adaptor proteins, protein
phosphates, kinases, GTP-binding proteins, transcriptional, and posttranscriptional regulators such as ZO-1 associated nucleic acid
binding proteins (ZONAB). TJ transmembrane proteins are also localized outside the junctions at the basolateral membrane. Nonjunctionally
expressed proteins not only have a major intracellular signaling role but are also used by pathogens to enter in the cells. Nonjunctional proteins
are accessible to drugs and are the main therapeutic targets of TJ-targeting agents.
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HCV infection biology exemplifies the role of nonjunc-
tional TJ proteins in liver disease and their potential as
therapeutic targets. Numerous studies have demonstrated
that nonjunctionally expressed TJ proteins, such as CLDN1
and OCLN are crucial in HCV cell entry.13,30 Together with
CD81 and scavenger receptor BI, they are four of the primary
host entry factors for HCV necessary for hepatocyte infec-
tion.13,31 Several studies have elegantly demonstrated that
both nonjunctional forms of CLDN1 and OCLN mediate HCV
entry.32–36 It is important to note that HCV does not directly
bind to CLDN1.37 Instead, CLDN1 serves as a coreceptor
implicated in viral entry steps following viral binding of
CD81.32,38,39 Indeed, after HCV–CD81 binding, CLDN1 inter-
acts with CD81 to facilitate viral internalization.32,38,39

OCLN, as CLDN1, appears to not bind HCV and acts a cofactor
necessary for late postbinding events involved in HCV
entry.40–42 Additionally, OCLN and CLDN1 contribute to
cell-to-cell transmission of HCV.13,43,44

Research in HCV biology has opened new insights into the
role of nonjunction TJ proteins in liver disease and their
potential as therapeutic targets. CLDN1 was among the first
TJ proteins uncovered as an essential host factor allowing the
virus to enter and infect hepatocytes.13Monoclonal antibodies
(mAbs) that recognize the conformation-dependent epitope
within ECL1 prevent and disrupt CD81–CLDN1 association at
the basolateral membrane of cells, thereby inhibiting viral
internalization.45,46 This mechanism confers to the CLDN1
mAbs a pan-genotypic effect enabling them to prevent HCV
infection and cure chronic hepatitis C.44,45 In chimeric mice
engrafted with human hepatocytes, CLDN1-specific mAbs
were able to prevent acute infection as well as cure of
established chronic viral infection.35 Moreover, these anti-
bodies have an additional antiviral effect by modulating
CLDN1 intracellular signaling, interfering with the MAPK
pathway involved in maintaining HCV infection.13,35 Other
mAbs targeting the extracellular loop-2 (ECL2) of CLDN1 have
demonstrated the ability to prevent HCV infection in chimeric
mice with human liver.13 Furthermore, CLDN1-derived pep-
tides or recombinant proteins can compete with the endoge-
nous CLDN1 and prevent viral entry.30

Similarly,mAbs against ECL1 and 2 of OCLN have also been
developed.47,48 Interestingly, a mAb targeting ECL2 of OCLN
prevented HCV infection in human hepatoma Huh7.5.1 cells
only when applied to the basolateral membrane instead of
the apical one, confirming the nonjunctional protein’s entry
role at the basolateral membrane.48 In addition, the ECL2-
directedmAb demonstratedmore effective antiviral activity,
indicating that ECL2 is the primary site involved in HCV late
entry steps.13 Some of the OCLN antibodies have also been
evaluated for safety and efficacy in human liver chimeric
mice with no signs of major toxicity.47

The mechanistic studies on nonjunctional CLDN1, OCLN,
and HCV have provided crucial insights into the biology of TJ
proteins, their role in liver disease, and as therapeutic
targets. Studying the biology of HCV and targeting the
intracellular signaling pathways of TJ proteins has facilitated
the development of precise mAbs for the treatment of liver
fibrosis and cancer, which are currently in clinical trials.28,49

Nonjunctional Tight Junction Proteins as
Therapeutic Target for Liver Fibrosis

Liver fibrosis is a common endpoint of chronic liver diseases,
marked by excessive extracellular matrix deposition, tissue
remodeling, and liver regeneration. Advanced liver fibrosis
stages can result in end-stage liver disease and is associated
with increased risk of liver decompensation and HCC. The
severity of liver fibrosis is the most important prognostic
factor in patients with MASLD50 and is linked to the occur-
rence of liver-related events. Moreover, impaired liver func-
tion in patients with HCC is a major barrier to cancer
treatment. Treatment for liver fibrosis is a major unmet
medical need, but the development of such treatments has
been challenging, with no drug being approved so far.
Inflammatory and metabolic drugs for SLD have shown no
major efficacy on liver fibrosis, a condition where collagen
remodeling and liver regeneration are impaired.

TJ proteins exposed at the basolateral membrane outside
the TJs have been shown to have a role in liver fibrosis
pathogenesis and to influence mesenchymal cell activation
and liver cell regeneration. Among all the TJ proteins, CLDN1
has been the most extensively studied. Multiple pieces of
evidence support the role of nonjunctional CLDN1 as a major
contributing factor for the pathogenesis of liver fibrosis.
Studies of CLDN1 expression have shown overexpression in
cirrhotic livers.51,52 CLDN1 levels, and in particular the non-
junctional form, increase alongside thefibrosis stage.28 Single-
cellRNA-sequencing analysis revealed thatCLDN1 is expressed
in liver epithelial cells (hepatocytes and cholangiocytes), bipo-
tent progenitor cells, and stellate cells. Notably, individual cell
expression appears to be the highest in bipotent progenitor
cells. TNFα, a cytokine implicated in liver inflammation and
regeneration, contributes to stellate cells activation into myo-
fibroblast, major players in collagen production. Additionally,
it enhances CLDN1 expression levels in hepatocytes as well as
myofibroblasts. Furthermore, in vivo knockdown of CLDN1
considerably reduced liver fibrosis and tumor burden in a
chimeric NASH mouse model, providing a genetic validation
for targeting CLDN1 for liver fibrosis and HCC prevention.28

An mAb that targets nonjunctional CLDN1 has demon-
strated a potent antifibrotic andHCC prevention effect across
several mouse and patient-derived models of liver fibrosis
progressing to HCC.28 Mechanistic studies have shown that
targeting CLDN1 suppresses profibrotic signal transduction
including a robust effect on the TNF-α–NFκB signaling path-
way. CLDN1 interacts directly with other proteins, including
epidermal growth factor receptor (EGFR), EPCAM, the ECM
receptor integrin α 5 (ITGA5), and the ECM component
laminin 5 (LAMA5). By modulating this interaction, CLDN1
mAb inhibits EGFR and ERK phosphorylation and suppresses
SRC proto-oncogene and SRC signaling, a key downstream
pathway of cell-ECM mechanoreceptors.53 These changes
result in modulation of the plasticity of hepatocytes, pro-
genitor cells, and myofibroblasts, leading to a reversal of
their pathological, immature, and profibrotic profile to more
differentiated and functionals, thereby reversing fibrosis and
reducing HCC development.28,54–56 The function and
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intracellular signaling of CLDN1, along with the effects of the
nonjunctional CLDN1-specific mAb are presented in ►Fig. 2.
In addition, the role of CLDN1 in fibrosis seems not to be
limited to the liver. CLDN1 has been found to be upregulated
in both lung and kidney patients andmodels.57–59Moreover,
treatment with CLDN1mAbs efficiently reduced lung and
kidney fibrosis in several state-of-the-art mouse and patient
models.28,60

The clinical development of an mAb targeting nonjunc-
tional CLDN1 in liver and other organ fibrosis is currently
ongoing. A fully humanized anti-human CLDN1mAb has
undergone safely testing in cynomolgus monkeys28 and
healthy volunteers. Moreover, a phase Ib clinical trial is
currently ongoing for patients with advanced liver fibrosis
or compensated cirrhosis (FEGATO-01, NCT05939947). A
phase II clinical trial is under way for patients with anti-
neutrophil cytoplasmic antibody-associated vasculitis with
rapidly progressive glomerulonephritis, which induces kid-
ney fibrosis (RENAL-F02, NCT06047171).

Other TJ proteins have also been described in liver fibrosis
and regeneration, although their role as therapeutic target
has beenpoorly investigatedwith no differentiation between

junctional and nonjunctional proteins. JAMs affect leukocyte
recruitment and migration, vascular permeability, and
remodeling. In healthy livers, epithelial cells, endothelial
cells, and hepatic stellate cells express JAM-A, whereas
JAM-B and -C are restricted to endothelial cells. Complete
and selective knockout of Jam-a in bone marrow-derived
cells and endothelial cells exacerbates liver fibrosis in CCl4-
induced model regulating nonsinusoidal vascular immune
cell recruitment, liver sinusoid capillarization, and hemato-
poietic stem cell quiescence.61 In a mouse model of CCL4-
induced fibrosis, JAM-B and -C expression increases in
endothelial cells and JAM-C expression is induced in myofi-
broblasts, thereby enhancing their contractility capacity.
These results suggest a potential role of these TJ proteins
in regulating liver immune cell recruitment and fibrosis-
induced portal hypertension.62 Tight-junction protein 2
(TJP2) is a TJ protein required for normal cortical distribution
of radixin, bile canalicular volume regulation, and biliary
microvilli density. Tjp2 knockout deregulates CLDN1, and key
bile acid transporters and detoxification enzymes and it is
associated with liver injury and fibrosis.63 Experiments with
mice fed a choline-deficient, ethionine-supplemented, or

Fig. 2 Nonjunctional CLDN1 as therapeutic target for liver fibrosis and cancer. Nonjunctional CLDN1 (njCLDN1) interacts with other
transmembrane proteins such as ITGA5 (Integrin Subunit Alpha 5), EPCAM (epithelial cell adhesion molecule), EGFR (epidermal growth factor
receptor), and JAG1/2 (Jagged canonical Notch ligand) as described previously.28 This interaction activates TNFα–NFκB signaling,
MAPK/ERK, SRC, and Notch signaling pathways, which control cell activation, differentiation, and plasticity as well as proliferation. A CLDN1-
specific mAb targeting exposed CLDN1 on hepatocytes or liver cancer cells has demonstrated to robustly inhibit liver fibrosis and
prevent and treat HCC.28,84 HCC, hepatocellular carcinoma; mAb, monoclonal antibody.
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diethoxycarbonyl-1,4-dihydrocollidine diet, models for
chronic liver disease, biliary–blood barrier injury, and duct-
ular reaction, show reduced expression of several TJ proteins
such as CLDN3, 5, and 7.64 In the healthy liver, CLDN4 and
CLDN7 are expressed only in hepatic progenitor cells
and cholangiocytes. However, in cirrhotic livers, CLDN4
and CLDN7 are detected in hepatocytes at the edges of
regeneration nodules, suggesting a role of these TJ proteins
in liver regeneration during extensive fibrosis.65 Livers from
patients with alcohol-related hepatitis, a condition usually
associated with extensive fibrosis, demonstrated upregula-
tions of several CLDNs and gap junction molecules linked to
hepatocyte regeneration and hepatic stellate cell activation.
These include CLDN5, CLDN10, CLDN1 and connexin 26, 32,
43, 46.6 as well as gap junction protein 12.66 In the CCl4
fibrosis model, the expression of hepatic and small intestinal
zonula occludens-1 (ZO-1) andOCLN significantly decreased,
and these changes can be reverted by a Ginkgolide-A treat-
ment.67 Finally, in rats treated with thioacetamide, a model
of liver fibrosis with pronounced ductular reaction, a dereg-
ulation of OCLN et CLDN2 driven by MAP-kinase, p38
MAP-kinase, and PI3-kinase in response to IL-1β has been
observed.68 During liver regeneration after partial hepatec-
tomy in rats, p38 MAP-kinase induces downregulation of
connexin 32 and upregulation of CLDN1. In vivo administra-
tion of p38 MAP-kinase inhibitor SB203580 can effectively
hinder connexin 32 downregulation and promote CLDN-1
upregulation, suggesting a possible contribution of this
compound toward the restoration of hepatocytes following
liver damage.69,70

In summary, CLDN1 is the first nonjunctional TJ protein
that has undergone extensive preclinical studies with com-
pleted proof of concept to treat liver fibrosis and prevent liver
cancer. A highly specificmAb targeting nonjunctional CLDN1
modulates the plasticity of hepatocytes, progenitor cells, and
myofibroblasts, restoring their differentiated and functional
cell phenotype that is disrupted byfibrosis and inflammation
in chronic liver disease and during the development of
HCC.28 The mAbs act mainly on CLDN1 expressed on hep-
atocytes and progenitor cells as well as CLDN1 additionally
expressed on stellate cells and myofibroblasts. The CLDN1-
specific mAbs exhibit a dual effect on liver fibrosis and HCC
prevention and thus have potential as a treatment for
patients with active chronic liver disease and advanced
fibrosis or at a high risk of HCC development. Moreover,
these CLDN1-specific mAbs may be employed as HCC adju-
vant treatment to reduce recurrence risk after surgery or
locoregional therapies or, once safety study have been com-
pleted, in patients with advanced cirrhosis who are not
eligible for liver transplantation. Compared with other com-
pounds in clinical development for MASH and fibrosis, the
CLDN1mAb displays a very robust antifibrotic profile and
has a shown a unique potential for preventing HCC in
preclinical models. Combining antimetabolic drugs such as
GLP-1 and thyroid hormone receptor-β agonists with
the CLDN1mAb will provide opportunities for treatment
strategies that simultaneously target MASH’s metabolic
and fibrotic hallmarks.

Targeting Tight Junction Proteins to Treat
Hepatocellular Carcinoma

HCC represents the most frequent type of primary liver
cancer and the fourth-leading cause of cancer-related death
worldwide.71,72 A key characteristic of HCC carcinogenesis
is its development in a chronically inflamed and most
frequently fibrotic liver microenvironment.73 In this regard,
Claudins as key regulators of cell–cell and cell–matrix
interactions have gained increasing interest as drivers of
hepatocarcinogenesis. In fact, numerous studies report dys-
regulated expression of different members of the TJ protein
family in HCC: while CLDN3 and 14 have been shown to be
downregulated in HCC,74,75 CLDN1, 5, and 10 are overex-
pressed in tumorous HCC liver tissue.52,76–78 Indicating a
functional impact of its differential abundance, CLDN1 over-
expression has been shown to be correlated with poor
patients’ survival.79 Similarly, high levels of CLDN10 were
found to be associated with worse patients’ outcome and
tumor recurrence.76–78 Only limited data exist on the
expression of other TJ proteins, such as OCLN and ZO in
HCC. Ram et al reported decreased expression of ZO-1 in HCC
tissue.80 In line, Nagai et al described decreased ZO-1 levels
in HCC as a predictive marker of poor prognosis.81 The data
on the expression level of OCLN in HCC are controversial and
both up- and downregulation have been described, poten-
tially reflecting a correlation of OCLN expressionwith tumor
cell differentiation76,82 (for a review see83). Strikingly, the
expression of Claudins has been associated with a specific
differentiation of the corresponding liver tumor. Hereby, not
only the overall expression level, but also particularly the
subcellular localization seems to impact on tumor cell plas-
ticity. Thus, CLDN1 overexpression in HCC tumor cells was
found to be accompanied by aberrant nonjunctional delocal-
ization in the cytoplasm and even nucleus.84 These CLDN1
overexpressing liver tumors were further found to show a
stem cell or progenitor like phenotype.84 CLDN4 and CLDN7
overexpressing liver tumors on the other hand show a
ductular differentiation.85 Similar observations were made
in other solid cancer types: cytonuclear delocalization of
ZO-1 has been shown to be associated with epithelial–
mesenchymal transition (EMT) and highly invasive human
lung cancer cells.86 In breast cancer, ZO-1 is associatedwith a
glandular differentiation.87 Cytosolic OCLN expression was
further associated with a well differentiation of gastric
tumor cells.88

Genetic and epigenetic alterations, as well as signaling
pathways, can regulate the overexpression and delocaliza-
tion of TJ proteins, potentially through posttranslational
modifications. Recent research from our group has shown
that Claudin-1 is upregulated in AXIN1-mutated HCC,
whereas downregulated in tumors with CTNNB1 muta-
tions.84 Additionally, claudin gene amplification has been
described to affect expression patterns.89 Potential mech-
anisms of claudin upregulation also include epigenetic
alterations. In fact, specific histone modifications have
been shown to contribute to CLDN14 overexpression in
HCC.74 Signaling pathway-mediated posttranslational
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modifications are believed to have the greatest impact on
dynamic changes in TJ protein expression. A recent study
found that TNFα-NFκB signaling strongly upregulates Clau-
din-1 expression in liver parenchymal and nonparenchy-
mal cells in the context of inflammation.28 Furthermore,
our group identified hypoxia as a significant factor in the
upregulation of CLDN1 expression in HCC cancer cells.84

Other studies suggest that oncogenic signaling pathways,
including PI3K/AKT/mTOR or MAPK/ERK signaling, can
upregulate hepatic expression of different claudin family
members.90,91 However, the molecular mechanisms under-
lying protein overexpression have not yet been fully de-
fined. The mechanism of TJ protein delocalization is also
not yet understood. Studies on colon cancer cell lines
suggest that the cell adhesion protein EPCAM, which is
often overexpressed in cancer, stabilizes Claudin 1 and 7 at
nonjunctional locations and prevents their lysosomal
degradation.83,92

Beyond its role as downstream targets of signaling cas-
cades, Claudins and other members of the TJ protein family
also actively impact on key oncogenic cell processes by
forming bidirectional signaling hubs that connect the extra-
cellular to the intracellular compartment (for a review see93).
As a key event during hepatocarcinogenesis, EMT has consis-
tently been associated with TJ protein alterations. However,
given the role of TJ in maintaining cell polarity as a key
feature of epithelial cells, the questions arise whether alter-
ations in the expression reflect an active role of these
proteins in the mechanism of EMT or rather depict its
consequence.While numerous reports in other solid cancers,
including breast, pancreatic, or colon cancer suggest a direct
interaction of diverse TJ proteins with EMT mediators (for a
review see93,94), conclusive perturbation studies in HCC are
mostly limited to Claudins. Suh et al reported CLDN1 to
induce EMT in HCC via c-Abl-ERK signaling induction and
upregulation of the transcription factors Slug and Zeb 1.95

Moreover, Yoon et al revealed CLDN1 to promote EMT via c-
Abl-OKC-d-mediated upregulation of MMP2.96 Conversely,
CLDN3 suppresses EMT in liver cancer by downregulation of
Wnt-β-catenin signaling.75

Beyond its impact on EMT, Claudins, and other TJ proteins
have been associated with cell–cell or cell–matrix interac-
tions and key oncogenic cascades regulating cell growth.
Corroborating the role of CLDN1 in cell–cell communication,
a recent study identified nonjunctional CLDN1 to control
Notch signaling upon cell–cell contact.84 Zhang et al reported
ZO-1 overexpression in liver cancer cells to inhibit cell
proliferation and migration in vitro.97

Given its active role in key oncogenic events, including
tumor cell differentiation and stemness, as well as EMT and
invasion, TJ proteins havebeen studied extensively as potential
targets of cancer therapy, including HCC. Yet, treatment strate-
gies for patients with advanced HCC that are not eligible for
surgicalor locoregional therapiesarehighly limited.7Currently,
the combination therapy with atezolizumab and bevacizumab
or durvalumab and tremelimumab represent the preferred
first line therapy for advanced HCC. However, objective treat-
ment response is below 30%,98 and alternative treatment

strategies such as receptor tyrosine kinases show only limited
efficacy in immunotherapy-resistant HCC’s (for a review
see99,100). Moreover, HCC recurrence after curative treatments
such as resection or local ablation is high, with rates exceeding
70% after 4 years. To date, there is no approved adjuvant
treatment to mitigate the risk of HCC recurrence. Thus, urgent
development of novel HCC therapies is imperative.

CLDN1 and CLDN6 are currently the targets with themost
promising and advanced clinical development. Targeting
nonjunctional CLDN1 by a mAb has been shown to suppress
tumor initiation and progression in patient-derived ex vivo
and in vivo models of HCC.28,84 Mechanistically, tumor cell
suppression was associated with broad inhibitory effects on
oncogenic signaling cascades, EMT, as well as cancer stem-
ness.84 These oncogenic pathways are also modified in other
cancers such as head and neck cancer.101 Currently, a phase
I/II clinical trial is investigating a CLDN1mAbwith or without
combinationwith pembrolizumab in patients with head and
neck cancer (NCT06054477).

CLDN6 is highly expressed in embryonic stem cells and in
HCC compared with normal tissue. CLDN6 expression in
HCC is associated with a biliary transdifferentation pheno-
type and sorafenib resistance. CLDN6 overexpression acti-
vates the JAK2/STAT3 signaling pathway, leading to
increased BLC2 expression and inhibition of apoptosis in
cancer cells.102 Additionally, CLDN6 competes with YAP1 for
TJP2 binding, preventing YAP1 cytoplasmic retention. This
results in elevated levels of free YAP1, facilitating its nuclear
translocation and transcription of genes that promote cell
proliferation and trigger EMT49,103 (►Fig. 3). Anti-CLDN6
mAbs conjugated with cytotoxic agents further showed
potent antitumor efficiency as well as sorafenib synergy
in mouse models of HCC.49 Safety and efficacy of CLDN6
targeting chimeric antigen receptor (CAR)-T cells, with or
without a CAR-T Cell amplifying RNA vaccine, for any type of
CLDN6þ cancers, including HCC, are currently being evalu-
ated in a phase I/IIa trial (NCT04503278). A nonprespecified
interim analysis of 22 patients treated in this trial has been
recently published. Safety data show manageable toxicity
with 46% of patients experiencing cytokine release syn-
drome. The unconfirmed objective response was 33% with
one complete response. However, no enrolled patient had
liver cancer.104

While data on small molecule inhibitor mediated target-
ing of ZO protein is yet restricted to gastrointestinal cancers
other than HCC (for a review see105), reduction of prolifera-
tion and migration of liver cancer cells upon transgenic ZO-1
overexpression may catalyze further research on ZO-target-
ing therapies in HCC.

In summary, targeting Claudins is a promising strategy
for HCC treatment. CLDN1- and CLDN6-based treatment
approaches have shown strong efficacy in preclinical models
and clinical development has started for solid tumors outside
the liver. Future studies should prioritize the development
of companion biomarkers and response predictors as well
as the investigation of combined therapies using immune
checkpoint inhibitors and/or antiangiogenic drugs to
enhance treatment efficacy.
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Conclusions

Studies on HCV biology have unveiled a key role of TJs proteins
in liver pathophysiology and development of fibrosis and
cancer.NonjunctionallyexposedTJ proteinshavebeenreported
to play a key role in oncogenic intracellular signaling
and mediate cell proliferation, differentiation, and function.
As a treatment for liver fibrosis, CLDN1 is currently the most
advanced target with ongoing clinical development. CLDN1
exists ina junctional andnonjunctional form, and it is expressed
not only in liver epithelial cells but also in liver progenitors and
activated myofibroblasts. Nonjunctional CLDN1 is has been
uncoveredasadriver for liverfibrosisandHCCviatheactivation
ofmultiple signalingpathwayssuchasTNF-α–NFκB, EGFR, ERK,
Notch-1, and SRC resulting in modulation of plasticity and fate
of fibrosis driver cells including hepatocytes and myofibro-
blasts. Preclinical data demonstrate robust and significant
antifibrotic and HCC prevention efficacy, highlighting an op-
portunity for this mAb in patients to treat advanced liver
fibrosis (F3/4), those at high risk of HCC, and patients with
cirrhosis who are ineligible to liver transplantation.

Several studies investigated the role of TJ proteins such as
CLDN1, CLDN4–7, OCLN, ZO-1 in the biology of HCC. Preclin-
ical studies have identified CLDN1 and 6 as therapeutic
targets. CLDN1- and CLDN6-based treatment approaches
have shown robust efficacy in preclinical models and clinical

development has started for solid tumors outside the liver.
The antifibrotic activity of CLDN1 targeting therapies is a
particular advantage for HCC treatment, since the dual
anticancer and antifibrotic effect may also improve the
underlying liver disease, which is often a key denominator
of survival in HCC patients. Further studies are needed for
clinical proof of concept in HCC.
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