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Introduction

Sample size calculations play a central role in study design
because sample size affects study costs, hospital resources and
staff time. Also, underpowered studies with type II errors can
be hard to interpret and there are also serious ethical consid-
erations for studies that have little chance of success.1,2

In veterinary orthopaedic risk factor studies, the positive
diseasestatusof theaffectedsubjects is ascertainedwithperfect
sensitivity and specificity, but sometimes the disease status of
control subjects isnot perfectly ascertained. Thatmeans control
groups may be mixtures of both unaffected cases and some
unidentified affected cases. Control groups with misclassified

data are called unlabelled. Data with truly affected cases in the
positive group and an unlabelled control group are called
positive-unlabelled (PU) data by the data science community.

Examples of PU data are well documented in humanmedi-
cine, but less so in veterinary medicine. Nevertheless, many
veterinary studies fall into the PU framework. For example,
genome-wide association studies of cranial cruciate ligament
disease (CCLD) in dogs use case–control designs. The affected
cases are truly positive CCLD cases because theywere enrolled
from the set of dogs who have undergone knee stabilization
surgery. The control cases are typically 5 years old or older
with no history of CCLD and pass an orthopaedic veterinary
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Abstract Objective Sample size calculations play a central role in risk-factor study design
because sample size affects study interpretability, costs, hospital resources and staff
time. We demonstrate the consequences of using misclassified control groups on the
power of risk association tests, with the intent of showing that control groups with even
small misclassification rates can reduce the power of association tests. So, sample size
calculations that ignore misclassifications may underpower studies.
Study Design This was a simulation study using study designs from published
orthopaedic risk-factor studies. The approach was to use their designs but simulate
the data to include known proportions of misclassified affected subjects in the control
group. The simulated data were used to calculate the power of a risk-association test.
We calculated powers for several study designs and misclassification rates and
compared them to a reference model.
Results Treating unlabelled data as disease-negative only always reduced statistical
power compared with the reference power, and power loss increased with increasing
misclassification rate. For this study, power could be improved back to 80% by
increasing the sample size by a factor of 1.1 to 1.4.
Conclusion Researchers should use caution in calculating sample sizes for risk-factor
studies and consider adjustments for estimated misclassification rates.
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exam by a board-certified surgeon. However, some control
dogs will have spontaneous rupture in the future, and so
genetically belong in the CCLD affected group. Other control
dogs may have subdiagnostic disease. For example, a dog
might appear sound on physical exam and be enrolled in the
control group, but may actually have force-platform-detect-
able hindlimb lameness. Such a dog should not be in the
control group because the lameness might be subclinical
CCLD.3

There are other examples of PU data in the veterinary
literature, typically in risk-factor studies using case–control
designs. For example, Arthur and colleagues used a case-
control design to assess the risk of osteosarcoma following
fracture repair.4 They said, ‘Theremay be additional cases [in
the control group] in which implant-related osteosarcoma
was diagnosed in the private practice setting without refer-
ral…’, suggesting that the control group may be unlabelled
because some control-group cases were actually osteosarco-
ma positive, but diagnosed outside the study. In another
example,Wylie and colleagues studied risk factors for equine
laminitis using controls obtained froman owner survey.5 The
authors noted the PU aspect of their data: ‘Our study relied
on owner-reported diagnoses of endocrinopathic conditions,
and this may have introduced misclassification bias.’

As mentioned above, the affected cases are ‘labelled’
positive, but the control data are ‘unlabelled’, because dogs
may be affected or unaffected. Treating the unlabelled con-
trol group as entirely unaffected is called the naive model.
The proportion of affected dogs in the control group is called
the nondetection rate or undetected rate.

Using the naive model when the nondetection rate is
positive causesmisclassification bias (because there are affect-
ed cases in the control group), and that bias iswell documented
in the data science literature.6 Biases due to misclassification
can bemitigated usingmodels other than the naivemodel and
with the appropriate data analysis, and there aremany articles
describing methods for analysing PU data. Bekker and Davis
provide an excellent summary of methods.6 Sometimes, how-
ever, researchers prefer the naivemodel because the analysis is
simpler and they believe their small nondetection rates induce
misclassification biases that are too small for practical consid-
eration. There is some suggestion that nondetection rates
under 10% do have little impact on bias.6

But bias in estimates (e.g. bias in regression coefficients)
is just one part of the results; the other part is inference (e.g.
p-values). Central to inference is the power of statistical tests.
Power is used in planning a study as a measure of the ability
of the study to make the correct decisions. That is, finding
p-value less than 0.05 when the statistical alternative
hypothesis is true. Typically, 80% power means that if the
group parameters are truly different, then the statistical test
has an 80% chance of obtaining p-value less than 0.05.

During the design phase of risk association studies,
researchers might calculate the sample size they need for
80% power assuming the nondetection rate is zero. That is,
there are no misclassified affected subjects in the control
group. However, if after collection the data are PU, then the
naivemodel is incorrect and the estimated powermay be less

than estimated. We investigated the effect of PU data on loss
of statistical power under the naive model. For comparison,
the reference power is defined as the power when the naive
model is correct and the group sizes are balanced. The results
are described in terms of power loss relative to the reference
power, both per cent power loss and absolute power loss. For
context, these two quantities are analogous to relative risk
and absolute risk from epidemiology.

Using a simulation, we described how statistical power
changes with varying proportions of undetected positives in
the naive controls, and varying the imbalance between the
numbers of cases and naive controls. Our first aim was to
demonstrate that the naive analysis of PU data reduces
statistical power in risk-factor studies, even for small non-
detection rates. Our second aim was to offer correction
factors to upward-adjust sample sizes and correct for the
power loss described in aim one.

Methods and Materials

The Test of Association
This was a simulation study assessing the changes in the
power of a univariate association test under different PU
conditions. There aremany statistical tests of association, but
we calculated the power for one of the most common tests,
Fisher’s exact test, which is used to test the significance of a
binary risk factor. More generally, this test can be used to
assess the significance of any risk factor using the predicted
values from a univariate logistic regression.

In the context of risk association studies, and all else being
equal, Fisher’s exact test would achieve its maximum power
for a balanced study design when the naive model is correct
(i.e. no undetected positives in the control group).We call that
maximumpower the referencepowerand reportedour results
as both per cent power loss relative to the reference power and
as absolute power loss from reference power. In other words,
we are using Fisher’s exact test to show how much statistical
power might be lost by ignoring the nondetection rate.

The Sample Size and Group Imbalance
The total sample size for the simulation was fixed at n¼200,
which is consistent with Healey and colleagues (n¼216), and
Baird and colleagues (n¼217).7,8 The effect size, 0.21, was
chosenbecausewith n¼200, the referencepowerwas close to
80%, which is a value that is commonly used in study design.
Thatway, the referencemodel is theonewitha standardpower
of 80%. Note that the sample size and effect size are not key
parameters for the simulation because for any sample size an
effect size can be chosen so that power is 80%. Also, effect size
and sample size are not features of PU data, per se.

The simulation study varied two study design param-
eters: the nondetection rate and group-size imbalance. The
proportion of undetected positives in the control group
ranged from 0 (the value for reference power) to 10%. We
used 10% as the upper limit because researchers are gener-
ally willing to accept nondetection rates below 10% and use
the naive model, but change to a PU analysis for rates
greater than 10%.6
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Wemodelled group imbalance usingHealey and colleagues
which used 161 dogs affected with CCLD and 55 unlabelled
dogs as controls, and Baird and colleagueswhich used 91 dogs
affected with CCLD, and 126 unlabelled dogs as controls, so
that imbalance ratioswereapproximately3:1 and1:3.Weonly
used two imbalance proportions (1:3 and 3:1) and no imbal-
ance (1:1) because the key parameter for this study was the
nondetectionproportion. That gave simulation sample sizes of
(50, 150), (150, 50), and (100, 100).7,8

The Simulation Algorithm
The overall approach was to simulate data, and then use that
data to calculate the p-value of Fisher’s exact test. The
process was repeated 5,000 times for each combination
of sample size and nondetection rate, and then the 5,000
p-values were compared with 0.05. The proportion of
p-values less than 0.05 was the estimated power.

Simulating the dataworked backward fromwhatmight be
expected. Instead of starting with values for a risk factor (e.g.
200 0’s and 1’s representing sex) and then simulating their
disease status, we started with the disease status (e.g. 50
affected cases and 150 controls with 135 unaffected and 15
affected) and then assigned binary values for the risk factor. It
was done that way to control the nondetection rate and
group sizes.

The simulation algorithm is most easily described using
examples, and we begin with calculating power for Fisher’s
exact test under the reference model, which was 100 cases
and 100 correctly labelled (i.e. 100 truly unaffected) controls.
That is, there were no affected cases in the control group, so
this was not PU data, and the naive model was the correct
model. Next, we associated a binary risk factor variable, X
(e.g. sex), with the cases and controls. The negative controls
were simulated by sampling 100 negative cases from a
binomial distribution with Pr(X¼1)¼0.2. That probability
means the baseline risk for the disease in the populationwas
0.2. It was chosen arbitrarily, because the baseline risk is not
central to power, the effect size is. As mentioned above, the
effect size was 0.21, so the 100 positive cases were sampled

from a binomial distribution with Pr(X¼1)¼0.2þ0.21.
Using the sex example means that having sex¼1 predis-
posed the animals to about double thebaseline riskof disease
(the baseline was 0.2, and with sex¼1, the risk was double,
0.2þ0.21¼0.41).

Now, the 200 cases were pairs of binary data, one repre-
senting the group and the other representing the risk factor.
These simulated data were tested with Fisher’s exact test. As
mentioned above, this processwas repeated 5,000 times, and
the resulting 5,000 p-values used to estimate power.

For the second example, we calculated the power for a PU
example. Suppose that in a 100-patient control group, 10%
were in fact undetected positives. Therefore, the dataset was
10 affected cases in the control group, 90 unaffected cases in
the control group and 100 affected cases in the positive
group. As in the previous example, the risk factor was
simulated by sampling from binomial distributions. Now,
90 controls were sampled from the binomial distribution
with Pr(X¼1)¼0.2, the 10 affected controls were sampled
from the binomial distribution with Pr(X¼1)¼0.2þ0.21
and 100 cases were sampled from the same binomial distri-
bution with Pr(X¼1)¼0.2þ0.21. The 10 mislabelled affect-
ed cases remain in the control group, so as to measure the
effect of treating PU data naively. As before, the simulated
data were treated like pilot data, and p-values were calculat-
ed. This processwas repeated 5,000 times and the power was
estimated as described in the previous example.

The Correction Factor
For aim 2, the sample-size correction factor estimation, we
used the same simulation algorithm and effect size (0.21) but
multiplied the group sample sizes by possible correction
factors, 1.1, 1.2 and so on, increasing sample size and
therefore the power, until it reached the 80%.

Results

►Table 1 describes power loss for the three study designs
with three different group sizes, (50, 150), (150, 50), and

Table 1 Power loss

Row Number of
positive cases

Number of
naive controls

Nondetection
proportion

Relative
power loss (%)

Absolute power
loss (from 0.82)

1 100 100 0.00 0.00 0.00

2 100 100 0.05 �4.81 �0.04

3 100 100 0.10 �10.29 �0.09

4 150 50 0.00 �10.77 �0.09

5 150 50 0.05 �14.92 �0.13

6 150 50 0.10 �22.50 �0.20

7 50 150 0.00 �10.45 �0.09

8 50 150 0.05 �15.26 �0.13

9 50 150 0.10 �22.47 �0.20

Note: This table orders sample sizes by relative power loss (%). The first row is the reference power, which had an absolute power of 0.82 (82%). The
last two columns represent power loss relative to 0.82, both as a percentage and an absolute difference. Note that some inconsistencies in the table
are due to rounding. For example, in rows 3 to 5, the absolute power is constant at 0.09, but the relative power changes.
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(100, 100) and for three nondetection rates, 0, 0.05 (5%), and
0.1 (10%). To give these parameters context, if the group sizes
are (50, 150) and the nondetection rate is 0.1, then the
positive (affected) group has 50 cases, and the unlabelled
control group (which we are treating naively in the analysis)
has 150 cases, 15 of which are actually affected cases. When
the nondetection rate is zero, the naive model is correct
because there are no affected cases in the control group. The
first row is the reference power, so its loss of power com-
pared with itself is zero. The reference power was calculated
in the simulation just like all the other powers and was
estimated to be 0.82.

Columns 5 and 6 are the power loss columns and have
negative entries because for this simulation PU data analysed
under the naive model always had lower power, as did unbal-
anced data. Column 5 is the per cent loss from the reference
power (82%) and column 6 is the absolute power loss from the
reference power. For example, the second row shows a�4.81%
relative power reduction when the group sizes are balanced
but 5% (0.05) of the control group are actually positive cases.

Rows one, four and seven are correct models (i.e. no
positives in the control group). Rows four and seven show a
power loss due to sample size imbalance only. So, for this small
example, group imbalancesometimes causedmorepower loss
than misclassified data as is seen by comparing row 3 to row
four. It is known that for equal overall sample size, group
imbalance results in less powerful tests. As an aside,more data
are often better than less data, and it is sometimes better to
have more unbalanced data than fewer balanced data.

Using►Table 1, increasing the nondetection rate within a
study design decreased power. For example, for the (100,
100) study design, power decreased bymore than 10% as the

nondetection rate increased (rows one to three). For the (50,
150) design, in rows seven to nine, power decreased by
12.02% (22.47–10.45) from the correct model (row seven),
but 22.47% from the referencemodel. Finally, note that for this
simulation, the absolute power losses are marked, but not
extreme. For example, in the (100, 100) design, (rows 1 to 3)
the power dropped to 0.73 (0.82–0.09) for row 3.

►Table 2 shows how many additional subjects are
required to regain power when the nondetection rate is
10%. Rows 1 to 5 are for the (100, 100) design, rows 6 to
10 are for the (150, 50) design and rows 11 to 15 are for the
(50, 150) design. The sample size was increased by 10% for
each row within a study design. As one might expect, lower
PU power needs more subjects to bring the power up to 80%.
For the unbalanced designs, the increased sample size also
fixes the power loss due to imbalance. For example, in row
one, the power is 0.69 for the original (50, 150) design with
10% nondetection rate. Row 14 shows that an additional 65
subjects or 32.5% more subjects are required to bring the
power above 80%. However, for the (100, 100) design, only
10% more subjects are required (rows one and two).

Discussion

This study showed that under specific conditions there was
modest power loss even for relatively small proportions of
undetected positives in the control group. That means that
risk-factor studiesmay have lower than expected power, and
therefore increased chance of type II error. It is important to
note that changes in power may affect more than power. For
example, in ►Table 1, rows 1 to 3, absolute power dropped
from 0.82 (row 1) to 0.73 (row 3). It would take

Table 2 Power improvement

Row Number of
positive cases

Number of
naive controls

Number of
false controls

Number of
total

Percent increase in N Power

1 100 100 10 200 0.0 0.78

2 110 110 11 220 10.0 0.83

3 120 120 12 240 20.0 0.87

4 130 130 13 260 30.0 0.89

5 140 140 14 280 40.0 0.90

6 150 50 5 200 0.0 0.67

7 165 55 6 220 10.0 0.70

8 180 60 6 240 20.0 0.77

9 195 79 8 274 37.0 0.84

10 210 80 8 290 45.0 0.87

11 50 150 15 200 0.0 0.69

12 55 165 16 220 10.0 0.73

13 60 180 18 240 20.0 0.78

14 70 195 20 265 32.5 0.83

15 80 210 21 290 45.0 0.85

Note: Rows 1, 6, and 11 show the power for when there are no false positives. The other rows show improvements in power when there is a 10%
nondetection rate. The sixth column shows the per cent increase in sample size, and the last column is power.
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approximately 20 additional subjects to reach the reference
power (using ►Table 2). If subjects were very expensive, as
they may be in an experimental study, then the apparently
small drop in power (0.09) is actually large in terms of cost.
On the other hand, for an exploratory retrospective study, a
0.09 (9%) power drop may not be considered much.

The working examples were from genome-wide associa-
tion studies, but the simulation results apply to any kind of
study with univariate association tests, such as any risk
factor study. That is a broad class of studies. Examples
include the univariate associations between postoperative
surgical infections and various surgical conditions (e.g.
boarded surgeon versus resident, manufacturer of bone
plates). In that case, there may be subdiagnostic infections
in the control group. Another example is univariate associa-
tion tests in veterinary surveys.

In this simulation, the undetected positives in the nega-
tive group were randomly sampled from the same popula-
tion as the detected positives in the affected group. That is a
common assumption, but there are othermodels. In one such
model, the undetected positives in the control group might
be a subpopulation of positives defined by another variable.
For example, in a CCLD genome-wide association studies, the
undetected positives in the control group might be positive
dogs with low body condition scores. We did not explore
those kinds of models in this research. Our goal was to find
some examples to show that for some studies, misclassified
data may cause power loss. When that power loss is com-
bined with unbalanced data, the loss can be extreme. For
risk-factor studies, researchers shouldfirst consider using PU

data analysis methods, but if that is not possible, then
caution should be used in calculating sample sizes for risk-
factor studies.
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