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Introduction

Awake craniotomy (AC) with intraoperative direct electrical
stimulation (DES) brain mapping has been performed since
more than a century ago pioneered by Bartholow1 leading to

the landmark paper by Penfield describing the sensorimotor
homunculi in 1937.2 Modern neurosurgery has progressed
significantly thereafter, especially with the advancement of
neuroimaging modalities. Yet, intraoperative stimulation
mapping (ISM) remains the gold standard for real-time,
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Abstract Intraoperative language and sensorimotor function mapping with direct electrical
stimulation allows precise identification of functionally important brain regions. Direct
electrical stimulation brain mapping has become the standard of care for the resection
of brain lesions near or within eloquent regions with various patient outcome benefits.
Intraoperative stimulation mapping (ISM) is commonly performed in an awake patient
for language and motor assessments. However, motor mapping under general
anesthesia, termed asleep motor mapping, has been increasingly performed over
the last two decades for lesions primarily affecting the motor areas of the brain. Both
asleep-awake-asleep and monitored anesthesia care have been successfully used for
awake craniotomy in modern neuroanesthesia. Each anesthetic agent exerts varying
effects on the quality of ISM, especially under general anesthesia. Careful selection of
an anesthetic technique is crucial for the successful performance of ISM in both awake
and asleep conditions. A comprehensive search was performed on electronic databases
such as PubMed, Embase, Cochrane, Scopus, Web of Science, and Google Scholar to
identify articles describing anesthesia for awake craniotomy, intraoperative brain
mapping, and asleep motor mapping. In the second part of this narrative review, we
summarize the effects of different anesthetic regimes and agents on ISM, causes of the
failure of awake craniotomy andmapping, and outline the anesthetic considerations for
ISM during awake craniotomy and asleep motor mapping.
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precise localization of eloquent brain regions due to inherent
variability in the anatomic and functional regions3 and
intraoperative brain shifts.4 ISM has been shown to allow
safe and tailored resections of eloquent regions with various
patient outcomes benefits.5 In the past two decades, there
has been a rising trend in asleep motor mapping, which was
made possible through the work of Taniguchi et al.6 Various
anesthesia drugs and regimes have been used over the years
during AC. But to date, no studies have directly examined the
effects of anesthetic agents on DES of the brain. This review
article summarizes the evidence on the anesthetic consider-
ations for ISM in awake and asleep conditions.

Methods

A comprehensive electronic search was performed in the
following databases from their inception to June 2023:
PubMed, Embase, Cochrane, Scopus, Web of Science, and
Google Scholar. The literature search was performed using
specific keywords: anesthesia AND awake craniotomy OR
intraoperative stimulation mapping OR direct electrical
stimulation, and asleep motor mapping OR direct cortical
motor evoked potential (dcMEP). To date, there are no
articles describing anesthesia considerations during intra-
operative stimulation brainmapping. Articles were screened
and included if it described the anesthesia management
during intraoperative brain mapping either AC or asleep
motor mapping, the effects of different anesthetic agents
on the quality of mapping, and the causes of failure of AC.
Articles that described extraoperativemapping and ACwith-
out ISM were excluded. Data were then extracted and orga-
nized to be presented in a cohesive manner.

Anesthesia Considerations for Intraoperative
Stimulation Mapping

Choice of Anesthetic Technique for Awake Craniotomy
with Intraoperative Stimulation Mapping
The main goal in AC is a patient who is calm, responsive, and
able to perform the tasks required during stimulation
mapping to accurately identify eloquent structures. Both
the asleep-awake-asleep (SAS) technique (with general
anesthesia [GA] during the asleep phase) and conscious
sedation (or monitored anesthesia care [MAC]) can be used
for ACs with ISM, provided that adequate local anesthesia
(LA) is administered to the scalp, short-acting anesthetic
drugs are used, and sedative infusions are stopped or
reduced ahead of the mapping.7 (►Table 1) Some of the
anesthetic consideration for electrocorticography (ECoG)
may apply to ISM and has been described previously.8

A meta-analysis by Stevanovic et al did not identify
significant differences between SAS and MAC techniques
with regard to the rate of mapping failure, intraoperative
seizures (IOSs), and new neurological deficits.9 A recent
meta-analysis by Natalini et al concluded that the MAC
technique had fewer AC failures and shorter procedure
time, while the SAS technique had a lower incidence of
IOSs.10 Nevertheless, both these meta-analyses are flawed

by bias due to the inclusion of a large number of observa-
tional and retrospective studies. Therefore, anesthesia man-
agement in ACs remains primarily guided by local practice
preferences, and no one technique is superior with regard to
the quality of ISM. Some authors have suggested that the SAS
technique could be beneficial in more prolonged procedures
(more than 4hours) to limit patient fatigue during mapping.
However, to date, no evidence supports this affirmation.11,12

Choice of Anesthetic Drugs for Awake Craniotomies
Many different drug regimens have been used in the setting of
AC.7,10,11Acommonly used anesthesia regime, as describedby
Sanai et al in their landmark paper on outcomes after language
mapping for glioma resection, includes premedication with
low doses of midazolam and fentanyl, followed by sedation
with propofol or dexmedetomidine with remifentanil and
cessation of all anesthetics after removal of the bone flap.13

If an SAS technique is chosen, either total intravenous anes-
thesia (TIVA) or volatile may be used during the asleep phases
of surgery, withmost studies reported using TIVA.9–11 Recent-
ly, Kulikov et al described the use of xenon anesthesia during
the first asleep phase of SAS for AC with the advantage of a
short awakening time of approximately 5minutes.14

Dexmedetomidine has been proposed for theoretical and
practical benefits in awake procedures, notably because it
maintains spontaneous breathing and patient cooperation15

while allowing reliable, functional mapping and ECoG
recordings.16 In patients with supratentorial brain mass
lesions, midazolam and propofol exacerbate or unmask
neurologic deficits more than dexmedetomidine at clinically
equivalent sedation levels,17 which could, in theory, make
dexmedetomidine less likely to induce false positives during
intraoperative mapping. Another retrospective study also
reported more postoperative neurological deficits in the
subgroup of patients who received benzodiazepines during
their AC, partly related to the unmasking of their preopera-
tive deficits.18

A randomized controlled trial (RCT) by Goettel et al found
that the efficacy of sedation and mapping quality was similar
between propofol-remifentanil and dexmedetomidine for
conscious sedation during AC for supratentorial tumor resec-
tion. However, patients in the dexmedetomidine group had a
lower rate of adverse respiratory events.19 Another RCT by
Elbakry and Ibrahim comparing propofol-remifentanil with
propofol-dexmedetomidine sedation for AC for epilepsy sur-
gery reported a higher sedation score in the propofol-remi-
fentanil group at the cost of more side effects such as nausea,
vomiting, oxygen desaturation, and respiratory depression.20

A recent meta-analysis concluded that dexmedetomidine
provided better surgeon satisfaction during AC with no signif-
icant differences with propofol in other outcomes (intra-
operative adverse events, patient satisfaction, and procedure
duration). However, one of the three RCTs included in their
analysis used the SAS technique; thus, the generalizability of
their results is questionable.21,22

An older observational study reported the use of a keta-
mine-propofol combination (ketofol) in a 1:1 ratio mixture
as part of theirMAC technique during AC for tumor resection.
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Adverse events occurred in 53.6% of their patient, which
included hemodynamic events (10.7%), respiratory events
(7.1%), oversedation (7.1%), and seizures (7.1%).23 These
results are comparable to those reported in propofol or
dexmedetomidine-based MAC techniques. However, they
did not report on the quality of ISM during the AC.10,21

Although the technique sounds promising, there is inade-
quate evidence currently to support this technique.

Failure of Awake Craniotomy and Intraoperative Mapping
Failure of AC is defined as an unplanned conversion to GA or a
premature cessation of intraoperative mapping. AC failures
are low, reported around 2 to 3%, irrespective of the anes-
thesia technique.9,10 The main causes of failure of AC were
intraoperative agitation or lack of compliance during map-
ping (35%), followed by IOSs (13%), drowsiness or overseda-
tion (9%), and acute neurological deficit (7%).10 Agitation and
reduced compliance during mapping may be caused by
factors such as significant preoperative deficits, impaired
cognitive status, poor motivation or tolerance for the proce-
dure, and fatigue from prolongedmapping. These factors can
be reduced by strict patient selection criteria, adequate
patient preparation, and the presence of a skilled multidis-
ciplinary team.5,10

The incidence of IOSs range from 5 to 8%,24,25 with only
0.5% leading to failure of AC.9 Most IOS resolved without
adverse effects to the patient.9 A large proportion of IOS is
triggered by DES of the brain.24,25 A retrospective study
found that risk factors for IOS include frontal tumor location,
preoperative history of seizures, preoperative radiotherapy,
and, interestingly, intraoperative use of dexmedetomidine.25

Another retrospective analysis also reported that IOS
detected via ECoG occurred more in dexmedetomidine com-
pared with propofol, but was not statistically significant on
univariate regression analysis with similar epilepsy out-
comes at 1 year in both groups.24 Further studies are needed

to delineate the association of dexmedetomidine with the
occurrence of IOS during AC.

IOS is usually self-limitingwith cessation of the ISM. Rapid
irrigation of the cortexwith cold saline will abort the seizure
in most other patients, allowing the resumption of mapping
after a brief rest period. However, refractory seizures are
usually treated with intravenous benzodiazepines, propofol
bolus, and antiepileptic drugs. Rarely conversion to GA with
invasive airwaymanagementmay be required.5,11,26Overall,
the combined evidence supports the notion that ACwith ISM
is a safe procedure with a high success rate.10

Anesthesia Considerations for Motor Mapping under
General Anesthesia
In recent years, there has been a growing number of studies
that compare motor mapping in awake patients versus
patients under GA. Two recent meta-analyses of mainly
observational studies found similar results with either tech-
nique with regard to neurological deficits (both early
and late) and severe morbidity. However, there was a trend
toward a greater mean extent of resection in AC compared
with GA (90.1% vs. 81.7%)27 and a lower rate of permanent
deficit in AC compared with GA (10.8% vs. 12.7%).28 Both
these meta-analyses concluded that glioma resection in or
near the motor areas can be safely performed with either
technique.

To date, no studies have compared volatile to TIVA anes-
thetic technique in asleep motor mapping. Most recent
studies on motor mapping under GA reported using a TIVA
protocol, usually consisting of propofol and remifentanil
infusions with muscle relaxants avoided after intuba-
tion.29–34 TIVA is recommended as the optimal anesthetic
regime in the literature35 because of the well-recognized
dose-dependent effects of volatile anesthetics on transcra-
nial MEP (tcMEP) amplitudes,36–39 which many authors
postulate to elicit similar effects during direct cortical

Table 1 Summary of anesthesia considerations for intraoperative stimulation mapping

Awake craniotomy Asleep motor mapping

Anesthesia
technique

Monitored anesthesia care (MAC)
OR
Asleep-awake-asleep (SAS)
Similar outcomes and quality of mapping,
but SAS may be advantageous in longer procedures

Total intravenous anesthesia (TIVA) preferred

IV anesthetic
agents

Various combinations may be used for sedation:
Propofol-remifentanil
Propofol-dexmedetomidine
Dexmedetomidine has the advantage of lower
adverse respiratory events, improved patient
cooperation, and surgeon satisfaction
Benzodiazepine may unmask preoperative
neurological deficits

Propofol-remifentanil combination is
commonly used during TIVA

Volatile agents N/A Minimum Alveolar Concentration less than 0.5
may be used if a triple motor mapping technique
is performed (DES, dcMEP, and tcMEP)

Muscle relaxants N/A Avoid after intubation

Abbreviations: DES, direct electrical stimulation; dcMEP, direct cortical motor evoked potentials; IV, intravenous; N/A, not available; tcMEP,
transcranial motor evoked potentials.
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stimulation of MEP. Low doses of volatile agents (Minimum
Alveolar Concentration < 0.5) allow acceptable tcMEP
recordings for clinical interpretation in some patients.40

Thus, volatile agents compatible with tcMEP testing41 will
likely enable the measurement of responses to cortical or
subcortical DES, as resistance to stimulation will be reduced
by bypassing the skull (►Table 1).

Nevertheless, earlier studies on asleep motor mapping
used volatile anesthetic techniques. Wood et al attempted to
localize the somatosensory and motor cortex using the low
frequency (LF) stimulation paradigm described by Penfield.
They successfully localized the somatosensory and motor
cortex under LA but could not localize the motor cortex
under volatile anesthesia.42 Similarly, Vitaz et al obtained
successful motor stimulation in only 50% of their patients
under volatile anesthesia using the LF paradigm, even when
higher thresholds were used.43

The high frequency (HF) stimulation paradigm developed
by Taniguchi et al was able to overcome the inhibition of
volatile anesthetic to synaptic transmission at the anterior
horn of the spinal cord by using a stimulus of 300 to 500Hz in
trains of 5, at a much lower total charge than those produced
by LF paradigm. They theorized that this repetitive stimula-
tion caused an accumulation of corticospinal excitatory
postsynaptic potentials in motor neurons to achieve firing
thresholds even under GA. This also allowed the detection of
motor responses without causing apparent patient move-
ment via electromyogram recording of evokedmuscle poten-
tials.6 Following this, Kawaguchi et al found that short-train
HF stimulation successfully evoked intraoperative MEP un-
der isoflurane or sevoflurane anesthesia but not single-pulse
HF stimulation. They also found that intraoperative MEP
changes were still detectable under partial neuromuscular
block conditions in 50% of patients.44

It should be highlighted that studies on subcortical HF
motor mapping that detailed their anesthetic regime have
used only TIVA (propofol-remifentanil) regime. Thus, the
correlation between motor threshold (MT) intensity and
distance from the corticospinal tract (CST) may not apply
to a volatile anesthetic technique.30–32 If low MTs are
reached, the CST is expected to be very close, and depression
of the MEP response secondary to volatile anesthetics could,
in theory, lead to damage to these tracts. Two recent small
retrospective studies showed that asleep motor mapping
(cortical and subcortical) can be safely performed using
triple motor mapping (using DES, tcMEP, and dcMEP) and
volatile anesthetic regime with either sevoflurane, desflur-
ane, or isoflurane in 50 to 70% nitrous oxide at less than
0.5minimum alveolar concentration and remifentanil,45 or a
mixed TIVA and sevoflurane technique with an end-tidal
average of 0.7%.46 Since HF subcortical motor mapping is still
a developing technique, the inclusion of volatile agents
during GA with motor mapping should be discussed with
the neurosurgical team. It may be justifiable if the triple
motor mapping technique is employed.

Ketamine and etomidate have been successfully used
during tcMEP in spine surgery.47–50 Two recent RCTs in

elective spine surgery reported that ketamine in subanes-
thetic dose (0.5mg/kg/h) and ketofol (in 1:4 mixture) im-
proved tcMEP amplitudes without affecting latency when
compared with dexmedetomidine and propofol.51,52 On the
contrary, a 1mg/kg bolus dose of ketamine significantly
suppressed tcMEP.53 Extrapolating these findings from
tcMEP, low-dose ketamine may have a role in augmenting
dcMEP signals, especially during intraoperative loss of sig-
nals after optimizing all other physiological parameters.
Nonetheless, these agents have not been directly investigat-
ed during asleep motor mapping.

Somatosensory evoked potential (SSEP) signals are less
sensitive to anesthetics, and reliable signals can be obtained
with lowerMAC concentrations of volatile agents. Since SSEP
phase-reversal uses an electrode grid directly applied to the
cortex, recorded signals are more reliable than transcortical
SSEP.42,54 Reliable SSEP phase reversal has been performed
using 0.5 to 1.0% isoflurane with 60% N2O.42,54 Muscle
relaxants can improve the quality of SSEP signals but are
generally avoided during SSEP phase reversal since motor
mapping with DES usually follows.

Conclusion

ISM is the gold standard for resection of lesions within or
adjacent to eloquent brain tissue with various outcome bene-
fits. AC with MAC is frequently utilized during ISM due to the
feasibility of intraoperative language, motor, and neurocogni-
tive testing. Various anesthetic regimens are compatible with
awake functional mapping, although dexmedetomidine may
have an advantage over other sedative agents. On the contrary,
intraoperative motor mapping can be performed both under
awake and asleep conditions. While TIVA has been the stan-
dard anesthetic regimen of choice in most recent studies in
asleep motor mapping, the role of low-dose volatile anes-
thetics could be found in this clinical context, especially with
the high-frequency stimulation paradigm and triple motor
mapping. Further studies are required to investigate theeffects
of volatile anesthetics on subcortical motor mapping and find
its role in future asleep motor mapping.
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