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Abstract Continuous flow chemistry is an enabling technology for automated synthesis. Artificial
intelligence (AI) is a powerful tool in various areas of automated synthesis in flow
chemistry, including process analysis technology and synthesis reaction optimization.
The merger of continuous flow chemistry and AI drives chemical production in a more
intelligent, automated, and flexible direction. This review discusses the recent
application of AI in analyzing and optimizing chemical products produced by continu-
ous flow chemistry with the most innovative equipment and techniques.
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Introduction

Compared with traditional chemical methods, continuous
flow technology has the advantage of allowing a high degree
of control over process parameters including temperature,
pressure, residence time, ease of scale-up, and automation,
and is suitable for multistep synthesis.1–3 Thus, it is an ideal
technology to control the chemical reactions. Continuousflow
chemistry provides an automated-friendly, flexible, innova-
tive, and space-saving reactionplatform, and has only recently
matured. In recent years, flow chemistry has been involved in
an increasing number of experiments. As the amount of one-
timeaccess,flowchemistry is especially suitable fordangerous
reactions such as diazotization, oxidation, nitrification, etc. As
a safe, easily controlled, and green platform, in line with the
concept of sustainable development, flow chemistry is receiv-
ing increasing attention.

Optimization of synthesis reactions is crucial for both
chemical research and discovery. However, optimization,
especially in natural chemical production, often involves
multiple variables and objectives, making the issue much
more complex. To decrease the complexity of the optimiza-
tion process, chemical automation is preferred and is easily
achieved in small-scale continuous flow experiments. Pro-
cess analytical technology (PAT) is a system for designing,
analyzing, and controlling manufacturing processes through
the measurement of Critical Process Parameters that affect
Critical Quality Attributes (CQAs).4 Combining online or
inline analytical techniques with flow chemistry helps auto-
mate production processes by enabling real-time inspection
and process control. For instance, inline nuclear magnetic
resonance (NMR) and online infrared (IR) help the system
quickly and accurately collect the information desired for
production. The information collected is passed on to a
computer for processing, which guides this or the next
experiment. Rapid and integrated data acquisition through
PAT tools allows for data-rich experimentation to be proc-
essed by automated optimization algorithms. However, this
places a high demand on the device, data acquisition, and
processing capabilities of PAT tools. As artificial intelligence
(AI) evolves, most of those issues continue to be improved,
thereby increasing the efficiency, agility, quality, and flexi-
bility of the current production. PAT tools are the premise
and foundation for the self-optimization of AI in flow chem-
istry. This review summarized the recent AI applications in
process analysis and optimization of chemical products
produced by continuous flow chemistry.

Process Analytical Technology

Several automated analytical methods have been developed
for continuous flow production.5,6 For a specific classification
of PAT tools and their respective application scenarios and
application examples, see Morin et al’s work published in
2021.7With PAT tools, experimental data are transferred to AI
accurately and quickly for data processing. AI usually starts
with data enhancement or dimensionality reduction, using

diverse algorithms such as multi-dimensional scaling to re-
duce interference and obtain clear and useful data, and this is
also known as preprocessingmethods (denoising and baseline
correction).8 For instance, to achieve a machine language
conversion of the spectral information, de-spiking, calibration
ofwavenumberandspectrometer, backgroundcorrection, and
normalization should be performed sequentially.9 After the
data are standardized, it is processed into machine-readable
information through a data analytics model. Therefore, the
combinationof PATand intelligent algorithms10–12 is powerful
in flow chemistry synthesis. This review aims to present the
applications of intelligence algorithms in process analysis of
continuous flow chemistry synthesis.

In 2020, Kappe’s group developed a design of experiments
(DOE) model to predict the experimental outcomes and used
inline NMR to guide the optimization of a complex nitration
reaction in flow.13 Low-field NMR suffers from overlapping
peaks and quantitative difficulties; however, low-field NMR
data canbeprocessedusing amultivariate analysis (MVA)with
the partial least squares (PLS) regression method. For com-
pounds with spectrally overlapping spectra, the inline NMR
tool paired with the MVA method is quite effective despite a
very short acquisition time. Previously, data processing meth-
ods of PAT were relatively simple and usually used to deter-
minethereactionprogressor relativeproductdistribution(i.e.,
% content). However, more progress is needed in multistep
process synthesis combining multiple PAT instruments.
Kappe’s group applied four different real-time analytical tools
(NMR, ultraviolet–visible spectroscopy [UV/vis], IR, and ultra-
high-performance liquid chromatography) to a continuous
flow multistep synthesis of mesalazine.14 Mesalazine was
obtained from the reactions of nitration, hydrolysis, and
hydrogenation, and indirect intricatemodeling, deep learning,
and PLS regression were created to quantify the desired
products, intermediates, and impurities in real-time at differ-
ent points along the process (►Fig. 1). These three AI techni-
quesprecisely identifiedproduct and impurityconcentrations,
thus controlling the process effectively, and contributes to the
optimization and understanding of the reaction.

In 2022, Kappe’s group implemented a multi-instrument
PATstrategy in a flow line that equipsmonitors capability for
CQAs at several points.15 They combined the multi-instru-
ment PAT strategy with a DOE strategy to develop process
models for all steps of the synthesis of mesalazine, including
reaction kinetics, mechanistic models, data-driven based on
process data, or depicting residence time distributions.15

Thesemodels contributed to the development of automation
concepts to some extent and reveal the full potential of real-
time monitoring and model control. In the same year,
Kappe’s group developed a self-optimizing reactor platform
to optimize the reactions efficiently and timely (►Fig. 2).16

Input variables are passed to the central supervisory control
and data acquisition (SCADA) system in a universal format
using Thompson sampling efficient multi-objective (TSEMO)
optimization algorithm.17,18 The SCADA system transfers the
required set points to the peripherals. At the end of the
reaction, inline measurements were performed using NMR
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and Fourier transform infrared spectroscopy, followed by
real-time processing using an indirect hard model and PLS
for quantification. The SCADA system further processes the
concentration, providing the desired target value, and
returning it to the decision algorithm to incorporate the
current model and select the next reaction condition.

Furthermore, Kappe’s group demonstrated how to use
artificial neural networks (ANN) to complete advanced
data processing of NMR and UV/Vis spectra to accurately
predict the concentration of intermediates in the produc-
tion of mesalazine.19 The creation and utilization of
simulated training spectra speed up the training process
of ANN and compensate for the lack of experimental
data. This strategy encourages more use of low-cost and
easy-to-get PAT instruments for multistep reaction moni-
toring. Given the above, PAT provides various analytical
data for AI in real-time and plays an important role in flow
chemistry.

Intelligent Algorithms for Self-Optimization

Automation has become a reality in life, including chemical
synthesis, and it enables scientists to save a great deal of time
and effort from time-consuming repetitive tasks. Automatic
self-optimization transforms traditional experiment meth-
ods designed by scientists into a mode that improves the
level of autonomy through intelligent algorithms that enable
the system to self-learn, self-decide, self-act, and maximize
the experimental efficiency of each design through algo-
rithms that greatly reduce the number of experiments and
achieve optimization targets. Automated flow systems
quickly search large regions of the experimental space,
which makes them suitable for solving optimization prob-
lems.20,21 Self-optimization combines flow reactors, process
analytics, and optimization algorithms to optimize the pro-
cess. An optimization algorithm receives the responses from
the reaction mixture analysis. Based on the results of previ-
ous experiments, the algorithm then generates the next set
of reaction conditions to be investigated, thus, creating a
feedback loop.22

The development of self-optimization algorithms has a
long history, whether it is DOE and Nelder–Mead Simplex
(NMSIM) in local optimization algorithms,23,24 or Stable
Noisy Optimization by Branch and FIT (SNOBFIT)25 in global
algorithms, they are all single-objective optimization. How-
ever, in complex chemical production, considering various
economic and environmental process indicators, single-ob-
jective optimization is not suitable for the current situa-
tion.26 Therefore, there is a great need to develop an
algorithm that can optimize multiple objectives at the
same time. Bayesian optimization (BO), as the current main-
stream optimization method, is popular to solve the
problems mentioned above. BO is mainly composed of a

Fig. 1 The multistep, multi-PAT reaction setup toward 5-ASA. Reproduced with permission from a reported study.14 PAT, process analytical
technology; 5-ASA, mesalazine.

Fig. 2 Overall approach of self-optimizing reactor platform combined
with the Bayesian algorithm and inline NMR and FTIR. Reproduced
with permission from a reported study.16 NMR, nuclear magnetic
resonance; FTIR, Fourier transform infrared spectroscopy.
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probabilistic surrogate model, acquisition function, and loss
function. A probabilistic surrogatemodel (e.g., Krigingmodel
and support vector machines) consists of a prior distribution
that predicts the likelihood of an unknownobjective function
and an observation model that describes the data generation
mechanism, which can greatly reduce the cost of optimiza-
tion targets that are high-dimensional, nonlinear, andmulti-
extreme. Next, the acquisition function predicts the optimal
target conditions from the surrogate model and gives guid-
ance for experiments. Then, according to the suggestions
given by the acquisition function, the real value obtained by
experimentation is compared with the value predicted by
the model, and the difference between them is the loss
function. So, the smaller the loss function, the better the
robustness of the model. Finally, the experimental data are
trained again to update the model until a perfect model is
obtained. The whole process is called BO. Therefore, in
practice, we tend to query the proxy model by minimizing
the loss function to. BO can avoid thehigh computational cost
of methods such as DOE (the number of required experi-
ments grows exponentially with the number of factors) and
tries tofind the optimal solution directly from suchvariables.

In 2017, Lapkin and coworkers compared the perfor-
mance of two self-optimizing methods, model-based DOE
(MBDoE) and Multi-objective Active Learner (MOAL) algo-
rithm, on the C–H activation in flow.27 This study prelim-
inarily explores the application of multi-objective
optimization and finds it has great potential in continuous
flow. In 2018, Lapkin’s group proposed a newmulti-objective
algorithm, TSEMO, which employed Gaussian processes,
spectral sampling, and a genetic algorithm.17 They studied
the nucleophilic aromatic substitution (SNAr) reaction and
N-benzylation reaction, respectively. Both cases optimize
four parameters (residence time, substance equivalent, sub-
stance concentration, and temperature) at the same time to

maximize the space–time yield (STY) of the reaction while
minimizing the E-factor (the proportion of waste).28 The
algorithm successfully determines optimal conditions cor-
responding to a trade-off curve (Pareto frontier) between
two chemical reactions in flow. In 2021, Lapkin’s group built
a self-optimization flow chemistry system with a user-
friendly MATLAB user interface.29 Taking the hydroxyalde-
hyde condensation of benzaldehyde and acetone as an
example, the system is initially given a certain amount of
experimental data as a training set, and by controlling
temperature, flow rate, and equiv. of different components,
the Pareto front is achieved. This system is designed to
further investigate the optimization behavior of the TSEMO
Bayesian optimizer in exploiting and exploring the experi-
mental parameter space. In the same year, Lapkin’s group
optimized a commercial formulation using robotic experi-
ments driven by a machine learning classification algorithm
with the TSEMO algorithm.30 In the experiment, sample
preparation, procession, formulation, and analysis were fully
controlled and automated by the robot. Then data were then
processed by the computer and the variables were optimized
by algorithms, forming a highly automated closed loop. After
several cycles, the optimal solution is finally obtained. With-
in 15 working days, the procedure outperforms human
intuition in terms of the ability of formulations to achieve
the desired result.

Moreover, Lapkin’s group developed a framework named
Summit to optimize chemical reactions (►Fig. 3).31 They
presented two benchmarks for reaction optimization and
compared the performance of seven strategies on these
benchmarks under different combinations ofmulti-objective
transformations. The results show that TSEMO exhibits the
best performance in both benchmarks. From here, it can be
seen that self-optimization strategies are gradually shifting
from the initial exploration to finding better algorithms to

Fig. 3 Overview of the approach used by Summit. Reproduced with permission from a reported study.31
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achieve low cost and high accuracy. In 2023, Lapkin’s group
demonstrated a method for adjusting the pH of several
multi-buffered polyprotic solutions for formulation
chemistry laboratories. Supported by an active optimization
strategy based on machine learning, the robotic platform
reached the target pH through a wholly automated iterative
workflow.32

In addition to the work of Lapkin’s group, many other
research groups have recently applied different BO algorithms
to different reactions in flow chemistry. In 2020, through the
study of the Claisen–Schmidt condensation reaction and the
subsequent liquid–liquid separation, Bourne and coworkers
used TSEMO for the first time to optimize the multistep
reaction and separation processes simultaneously and
achieved three objectives.33 The optimization was initialized
with 20 LHC (Latin hypercube sampling, a common sampling
method) experiments, followed by 89 experiments designed
using the TSEMO algorithm. Out of the 109 experiments, 18
Pareto-optimal solutions were identified and consisted of the
Pareto front. This Pareto front allows scientists to visualize
information about trade-offs between variables. Sometimes
when faced with complex reflection problems, chemical sci-
entists have to distinguish between continuous variables and
discrete variables. Discrete variables here can be fixed values
under certain environmental conditions, such as material,

reaction solvent, solubility, etc. and often reflected in the
algorithm in the form of an integer. In 2021, Bourne’ group
proposed a mixed variable optimization (MVMOO) algorithm
for cases where discrete and discrete variables must be opti-
mized.34 The algorithm offers a cost-effective method for
optimizingmixed variablemulti-objective optimization prob-
lems without the need to reparameterize the discrete varia-
bles. In 2022, the group developed an automated polymer
synthesis and analysis platform that enables closed-loop
multi-objective optimization of RAFT polymerization by com-
bining orthogonal online NMR spectroscopy with inline GPC
and TSEMO algorithms.35 On this platform, although there
were a few redundant experiments, the automatic polymeri-
zation of RAFT, which was not feasible under the original
conditions, was successfully realized from the batch tank
reaction. Overall, it makes great significance for humans to
optimize the conditions for polymerization throughnohuman
interaction. Furthermore, the group also developed an auto-
mated continuous flow platform and successfully applied it
to the Heck cyclization–deprotection reaction sequence
(►Fig. 4).36 The coupling of online high-performance liquid
chromatography (HPLC) and a BO algorithmwith an adaptive
expected improvement acquisition function (BOAEI)37 deter-
mined a total yield of 81% in just 14hours. This method
represents a readily available technology for accelerating the

Fig. 4 Self-optimizing reactor platform for multistep synthesis of aryl ketones. Reproduced with permission from a reported study.36

Pharmaceutical Fronts Vol. 5 No. 4/2023 © 2023. The Author(s).

Review of the Applications of AI in the Process Analysis and Optimization of Chemical Products Shen, Su e223



creation of novel chemical syntheses with multiple steps. In
2023, the group applied the MVMOO algorithm to a self-
optimizing flow reactor, focusing on SNAr and palladium-
catalyzed Sonogashira reactions.38 The effect of different
solvents on the regioselectivity of the SNAr reactions and the
effect of different ligands on the process efficiency of the
Sonogashira reactions were determined, and the optimal
continuumparameters for bothwere determined. Specifically,
Bourne and coworkers considered solvents as discrete variable
and found that common solvents’ polarity metrics values as
chemical descriptors play a vital role in the SNAr reaction. In
the Sonogashira reactions, the choice of phosphine ligand is
regarded as a discrete variable and the trade-offs between
common continuous variables and discrete variables were
compared. The MVMOO algorithm made it possible to opti-
mize the mixed variable reactions with two objectives effec-
tively. Kappe’s group demonstrated an autonomous multi-
objective optimization platform for multistep synthesis of
edaravone (►Fig. 2).16 The platform performsmulti-objective
optimization of the two-step chemical synthesis including
sevenoptimizablevariables and threeoptimizationobjectives,
whichmakes optimization exponentiallymore difficult. How-
ever, this platform can achieve satisfactory results in relatively
few iterations. In terms of the amount ofdata available and the
size of the design space that can be optimized, this is a
significant advance in the complexity of autonomous flow
reactors.

Kondo et al developed a BO-driven multi-parameter
parallel screening to predict reaction conditions and self-
optimization process for the flow synthesis of aromatic
compounds.39 Through the study of cross-coupling reac-
tions, they successfully and quickly predicted the suitable
conditions for the synthesis of 2-amino-2-hydroxy-biaryls
(up to 96% yield) and 2,2-dihydroxy biaryls (up to 97% yield).
The finally obtained optimized conditions were successfully
applied to the synthesis at the gram level.

In recent years, self-optimization strategies have been
widely applied in homogeneous reactions or simple hetero-
geneous reactions. For complex continuous gas–liquid–solid
reaction systems, Liang et al developed a continuous reaction
optimization platform based onNelder–Mead simplexmeth-
od and pure BO algorithm.40 In the hydrogenation reaction of
nitrobenzene, 3,4-dichloronitrobenzene, and 5-nitro-isoqui-
noline, BO outperforms only one variable at a time and
obtains higher yields and less experimental cost.

Nandiwale et al demonstrated a continuous automated
platform for self-optimizing reactions involving solids, which
is easy to cause blockage of the reactor channel in flow.41 The
platform consists of a continuous stirred-tank reactor cascade,
a slurry feed pump, a photoreactor, and an online HPLC. It is
optimized bymixed-integer nonlinear programming,42which
is based on the optimal DOE and the sequential response
surface method and Dragonfly BO algorithm43 for single and
multi-objective optimization, respectively. Experiments
showed that Dragonfly BO responds well to both multiple
continuous and discrete variables.

Nambiar et al demonstrated an entire process scheme.
The Dragonfly BO algorithm first optimized a multistep

synthesis route by AI planning and later ran on an automated
robotic flow platform (►Fig. 5).44 In contrast to the previ-
ously proposed scheme,45 the authors introduced a BO
algorithm to the multistep synthesis route proposed by the
tools of computer-aided synthesis planning, ASKCOS, and
PAT tomonitor the reaction in real-time on amodular robotic
flow synthesis platform. By showing experimentswith the full
telescoped process for multistep synthesis of sonidegib, they
not only demonstrated how the BO works but also identified
several areas where human input is still needed such as the
measurement of solubility and explanation of the reaction
mechanism. Overall, coupling automation, machine learning,
and robotics contribute to experiment design, execution, and
optimization, which can fuel manual experiments.

Hickman et al used Atinary’s transfer learning algorithm
SeMOpt, which is a general-purpose, model-agnostic BO
framework that uses meta-/few-shot learning to efficiently
transfer knowledge from related historical experiments to a
novel experimental campaign via a compound acquisition
function.46 They used the Self-driving Laboratories
(SDLabs),47 which is also known as Materials Acceleration
Platforms (MAPs), to enable knowledge transfer across opti-
mization campaigns by employing neural processes.48 After
meta-training, SeMOpt performed well in optimizing the
simulated cross-coupling reaction and optimizing the Pd-
catalyzed Buchwald–Hartwig cross-coupling reaction.
Transferred knowledge mainly contains three forms: (1)
knowledge transfers from human experts. In other words,
scientists manually define the parameters of the selectable
area. (2) Knowledge transfers from a proxy campaign. The
proxy campaign is chosen to be executed in parallel with a
targeted campaign, and the knowledge is dynamically passed
from proxy to target when measurements are made in both
campaigns. (3) Knowledge transfer from pre-existing cam-
paigns, e.g., knowledge that has been reported before or
obtained from open-source databases. This study expresses
an important idea that the robot could find usable informa-
tion from historical correlation data, which can greatly
improve the speed of the optimizer.

Dunlap et al optimized flow synthesis of butylpyridinium
bromideby using amulti-objective experimental designvia a

Fig. 5 Overall approach for machine-assisted synthesis planning and
process development. Reproduced with permission from a reported
study.44
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BOplatform (EDBOþ ).49 They used nmrglue, an open-source
Python module, to compare semi-automated NMR spectros-
copy analysis data and manual processing methods of spec-
tra collected on low-field (60MHz) and high-field (400MHz)
NMR spectrometers. The optimization objects, reaction
yield, and STY were optimized by changing three continuous
variables: residence time (Tres), temperature (T), and the
mole fraction of pyridine (Cpyr). The predicted Pareto front
has little error compared with the actual experimental data.
It shows the power of self-optimization tools for continuous
reaction optimization.

As mentioned above, self-optimization in continuous
chemistry process development and optimization is an
attractive field. However, the establishment of a complete
self-optimization platform is still limited by the maturity of
the current continuous processes, the advanced nature of the
algorithm, and the accuracy of PAT, which requires people to
constantly update and improve continuous flow processes,
algorithms, and PAT.

In 2022, Hickman and coworkers extended experiment
planning algorithms PHOENICS and GRYFFIN,50–52 such that
they could handle arbitrary known constraints via an intui-
tive and flexible interface. As GRYFFIN was the more general
algorithm, and PHOENICS was included within its capabili-
ties, authors referred only to GRYFFIN. They demonstrated
the flexibility and robustness of this algorithm by constrain-
ing some continuous and discrete test functions to a certain
extent. They also illustrated the algorithm’s practical utilities
in two simulated chemical research scenarios: the optimiza-
tion of the synthesis of o-xylenyl Buckminsterfullerene
adducts under constrained flow conditions and the design
of redox-active molecules for flow batteries under synthetic
accessibility constraints. In their work, GRYFFIN shows good
performance and opens up a broader application of algo-
rithms in chemical reactions.

Conclusion and Outlook

Continuous flow technology has been increasingly empha-
sized and developed in chemical production and has evolved
from a basic organic synthesis to a now important and
realistic production method. In this article, we review the
successful cases of process analysis and self-optimization
applied in AI in continuous flow chemistry. As mentioned
earlier, PAT is beneficial for the measurement of various data
in continuous chemistry. In addition, AI combined with PAT
can model the reaction system to quantitative data of each
component in real time and intuitively, effectively improving
the chemist’s cognitive level of the reaction process. The self-
optimization platform is an experimental closed-loop sys-
tem consisting of PAT and AI, which can automatically detect,
analyze, optimize, and quickly converge to find the optimal
solution as long as scientists provide original experimental
data for themodel, thus greatly reducing costs and increasing
manufacturing productivity.With the advent of Industry 4.0,
AI will be more and more respected. To ensure efficiency,
agility, quality, and flexibility in continuous processes, the
equipment of PAT and AI algorithms should be constantly

improved. Perhaps in the further, AI could do the tasks
entirely independently, meaning that AI has the capacity
to acquire basic abilities in a similar manner how human
acquires the ability of thinking. Designing experiments,
optimizing targets, and obtaining optimal solution sets
can be done automatically by AI, ultimately realizing the
intelligent and efficient chemical production in the 21st
century.
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