Morphometry of Superior Sagittal Sinus and Its Clinical Significance

Grace Suganya1 Ariharan Krishnaraj2 Raveendranath Veeramani3 Dinesh Kumar3 Nagarajan Krishnan2

1 Department of Anatomy, All India Institute of Medical Sciences (AIIMS) Kalyani, Nadia, West Bengal, India
2 Department of Radiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
3 Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India

Abstract
The position of the superior sagittal sinus (SSS) in the midline along the sagittal suture is still a debate among neurosurgeons. The aim of the study is to evaluate the diameter and deviation of the SSS at various landmarks in the midline. We evaluated 100 computed tomography venography images. The mean diameter of SSS between nasion and bregma was 2.6 ± 0.7 mm and it was 3.7 ± 0.9 at bregma. Between bregma and lambda at lambda, the mean diameters were 5.1 ± 1.2 and 5.7 ± 1.04, respectively. Deviation of SSS toward the right side was seen in approximately 77% of cases, while left deviation and no deviation were seen in 11 and 12%, respectively, between nasion and bregma. At bregma, 62, 10, and 28% deviation was seen toward the right side, left side, and in midline, respectively. In other three segments between bregma and lambda, at lambda and beyond lambda the right and left deviation of SSS were found in 68, 70, 71% and 11, 9, 11% respectively. While in these three segments there was no deviation in SSS in 21(between bregma and lambda), 21(at lambda) and 18% (beyond lambda). Further, we compared our data between genders and age groups. A statistically significant difference in diameter of SSS between genders was noted at the level of bregma and a significant difference in deviation of SSS between genders was noted in the segment between nasion and bregma. Thus, the findings of this study would serve as the crucial surgical data for the neurosurgeons in placing the burr holes in craniotomies and in the interhemispheric approach for midline tumors.

Keywords
► superior sagittal sinus
► sagittal suture
► bregma
► lambda
► burr holes

Introduction
Dural venous sinuses, situated between the endosteal and meningeal layers of dura mater, drain blood from the brain and cranial bones. They are lined by endothelium and have no valves. Their walls are thin and devoid of muscular tissue.¹ The superior sagittal sinus (SSS) is located in the falx cerebri in the midline, curving the inner surface of the frontal bone, in between the parietal and the occipital bone in its squamous part.¹

To date, sagittal suture in the midline extending from nasion to inion was considered as the external landmark to locate the SSS by the neurosurgeons. But there are a lot of studies contesting this fact.² The deviation of the SSS from the

Address for correspondence Raveendranath Veeramani, MD, Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantri Nagar, Puducherry-605006, India (e-mail: dr_raveendra@rediffmail.com).

Indian J Neurosurg

ISSN 2277-954X.

© 2024. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd., A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
midline was noticed in various studies. This may be of
importance to the neurosurgeons in the placement of burr
holes for craniotomies and in the interhemispheric approach
to the midline tumors and the vascular lesions. Any fortuitous
injury to the sinus during surgical approaches leads to
uncontrolled bleeding leading to catastrophic results.3

The aim of this study is to evaluate the diameter of SSS and
deviation of SSS from midline using computed tomographic
venography (CTV) taking certain landmarks in the midline
and dividing the SSS into segments based on the landmarks.
Thus, the findings of this study might help in knowing the
preoperative positioning and diameter of SSS at various
landmarks in the midline and help in preventing the
various potential intraoperative complications.

Materials and Methods

This study was a descriptive study with data collected
retrospectively. The study was done in the Department of
Radiology and the Department of Anatomy between 2020 and
2022. The normal CTV studies of the patients, evaluated for
various neurological/neurosurgical conditions, were taken up
for this study. The consecutive 100 CTV studies were used up
for analysis. The data were taken from the Picture Archiving
and Communication System (PACS) of the Department of
Radiology, from the year 2017–to 2020. Approval from both
the Departmental Postgraduate Research Monitoring
Committee and the Institute Human Ethics Committee was
obtained. (JIP/IEC/2020/076). All cerebral CTV studies done
during 2017 to 2020; patients between the age group of 18 to
60 years, who were reported as normal by a neuroradiologist,
were included in the study. Patients with poor quality of CTV
either due to motion artifacts or inadequate contrast
opacification or pathologies affecting the normal venous
anatomy like venous thrombosis and tumor invading dural
venous sinuses were excluded from the study.

CTV records of patients satisfying inclusion criteria were
used in the study. The CTV studies of the brain were retrieved
from PACS, Department of Radiology.

The CTV datasets were loaded in SERVER WORKSTATION
(Siemens Syngovia, Germany) and the venographic images
obtained in the axial plane were reconstructed by
multiplanar reformation and the diameter and deviation of
SSS were noted in the appropriate plane. The landmarks used
were nasion, bregma, and lambda. Based on these landmarks,
the SSS was divided into five segments. The segments were
between nasion and bregma, at bregma, between bregma and
lambda, at lambda, and beyond the level of lambda The
diameter and position of SSS were measured at these
landmarks. All measurements were done by a single
investigator thrice and its mean was taken as final.
Twenty-five CTV images were measured independently by
another observer and the interobserver variability was
checked. Twenty-five CTV images evaluated by the
principal investigator have repeated again after a month
and the intraobserver variability was checked. The
demographic data like age and sex were noted. The records
were divided into five groups based on the ages less than or
equal to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 60, and the data
were evaluated.

Independent Student’s t-test was done to compare gender
differences between the above-mentioned parameters. One-
way analysis of variance was done to compare the variables
between different age groups. A post-hoc Tukey test was
done to compare each age group.

p-Value less than 0.05 was considered as significant. Chi-
squared test was used to analyze the frequency of deviation
of SSS at various landmarks. Statistical Package for Social
Sciences (SPSS) software version 19.0 was used for all
statistical analysis

CTV versus MRV or DSA

We used CTV as the intravenously injected contrast results in
uniform opacification of the dural venous sinuses, unlike the
magnetic resonance venography (MRV) where flow-related
inherent artifacts may obscure detail or digital subtraction
angiography (DSA) venous phase with nonopacified blood
joining the contrast resulting in wrong estimation of sinus
lumen or diameter.

Results

In this study, 100 CTV records were analyzed, out of which 37
records were of from male subjects and 63 from female
subjects. In this study, along the sagittal suture, the sinus was
divided into five segments based on the various bony
landmarks in the midline. The landmarks used were
nasion, bregma, and lambda. The segments were between
nasion and bregma, at bregma, between bregma and lambda,
at lambda, and beyond the level of lambda. The diameter and
deviation of SSS were measured at these segments.

Diameter of SSS

The mean diameter between nasion and bregma was
2.6 ± 0.7 ranging from 4.3 to 1.2 mm. The mean diameter
at bregma was 3.7 ± 0.9 ranging from 6.3 to 1.7 mm. The
mean diameter in the other two landmarks between bregma
and lambda and lambda were 5.1 ± 1.2 (8.2–2 0.2 mm) and
5.7 ± 1.04 (8–2 mm), respectively. The overall diameter and
comparison of diameters of SSS at various landmarks
between genders are given in Table 1. The comparison of
diameters of SSS at various landmarks between different age
groups are summarized in Table 2. At the level of bregma,
there was a significant difference in the diameter of SSS
between the genders (p = 0.017). However, there was no
other significant difference in diameter of SSS between the
genders or the age groups. The CTV images showing the
measurement of the diameter of SSS between nasion and
bregma, at bregma, between bregma and lambda, and at
lambda are given in Figs. 1, 2, 3, and 4, respectively.

Deviation of SSS

The deviation of the SSS from the midline, that is, from the
sagittal suture was noted. The deviation was more towards
right side when compared to that of left side. At the level
between nasion and bregma, the right and left deviation
were 77 and 11%, respectively, and there was no deviation in around 12%. Whereas at the level of bregma deviation was 62 and 10% toward right and left side, respectively, no deviation was seen in 28%. Between bregma and lambda, no deviation was seen in 21%, while the right deviation was 68% and the left deviation was 11%. In other two landmarks at lambda and beyond lambda, the right deviation was 70 and 9%, respectively. However, the left deviation was 9% at lambda and 11% beyond the level of lambda. Around 21% had no deviation at the level of lambda and 18% had no deviation beyond the level of lambda. The overall deviation of SSS at various landmarks is given in Table 3.

The deviation of SSS was measured from midline; the mean deviation to the right between nasion and bregma was 3 mm, whereas on the left side it was 1.5 mm, at bregma the right deviation was 4 mm, and at left it was 1.8 mm. While the mean deviation on right side between bregma and lambda was 3.5 mm, to the left it was 2 mm and at lambda the mean right deviation was 5 mm and at the left side it was 3 mm. Beyond the level of lambda, the mean deviation was 5.8 mm toward right and toward left it was 3.2 mm.

The frequency of deviation of SSS from the sagittal suture was compared between genders. There was a significant difference noticed in the deviation of SSS between nasion and bregma between genders. The results are summarized in Table 4. The CTV image showing the deviation of SSS is given in Fig. 5. Three-dimensional image showing the deviation of SSS from sagittal suture at the site between bregma and lambda is given in Fig. 6.

Dominancy of Transverse Sinus

The dominancy of the transverse sinus (TS) was decided by the flow pattern of SSS into TS. According to the flow pattern based on the continuation of SSS at the level of lambda, the dominancy was decided. If the SSS continue as the right TS, it is right dominance, or if SSS continue as left TS, it is left dominance. On the other hand if SSS splits into right and left TS at the level of lambda then it is considered as equal dominance. Around 52% of the cases had a right dominance, 23% had left dominance, and 41% had equal dominance.

Discussion

The SSS is located in the falx cerebri in the midline extending from the crista galli to the level of the internal occipital protuberance. The sinus is said to be coursing in the midline along the sagittal suture. As per literature, there were many cadaveric and radiological studies done to estimate the width and the position of the SSS using various landmarks in the midline.

Diameter of SSS

The width or diameter of the SSS was found to be increasing as it courses posteriorly. The diameter was 2.6 ± 0.7 between nasion and bregma, whereas the diameter was 5.7 ± 1.0 at lambda in this study. This confirms the findings of the various previous both cadaveric and radiological studies. The findings of the cadaveric studies by Reis et al, Samadian et al, and Sayhan et al were similar to this study in which the maximum diameter of the SSS was found to be at lambda and was approximately 7.9, 9.4, and 13.1 mm, respectively. Similarly in a radiological study using magnetic resonance imaging (MRI) by Oberman et al, the maximum diameter was at the lambda that was approximately 8.5 mm. However, another radiological study using MRI by Reis et al contrasted the findings of this study. In this study, the maximum diameter of the SSS was found to be between the bregma and lambda that was 12.4 mm. In the same way, in contrast to this study there were two cadaveric studies. In the study by Tubbs et al, the maximum diameter of SSS was at the midpoint of the sagittal suture (9.4 mm). The second cadaveric study was by Thamke et al in which the maximum diameter of SSS was at the midpoint of SSS (1.3 mm).

Deviation of SSS

The position of the SSS was assessed by taking the midline structure sagittal suture as the reference point. In this study, it was found that there was a deviation in the direction of the SSS from the midline. In all the taken five landmarks, it was found that the deviation of SSS was more toward the right

Table 1 Overall and comparison of diameter of SSS between gender

<table>
<thead>
<tr>
<th>Landmarks</th>
<th>Mean ± SD</th>
<th>Maximum–Minimum (mm)</th>
<th>Mean ± SD</th>
<th>Maximum–Minimum (mm)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male (n = 37)</td>
<td>Male (n = 37)</td>
<td>Male (n = 37)</td>
<td>Female (n = 63)</td>
</tr>
<tr>
<td>SSS—between nasion and bregma</td>
<td>2.6 ± 0.7</td>
<td>4.3–1.2</td>
<td>2.7 ± 0.8</td>
<td>4.3–1.2</td>
<td>0.32</td>
</tr>
<tr>
<td>(mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSS—bregma (mm)</td>
<td>3.7 ± 0.9</td>
<td>6.3–1.7</td>
<td>4 ± 1.02</td>
<td>6.3–1.8</td>
<td>0.38</td>
</tr>
<tr>
<td>SSS—between bregma and lambda</td>
<td>5.1 ± 1.2</td>
<td>8.2–2.02</td>
<td>5.3 ± 1.3</td>
<td>8–2.8</td>
<td>0.017*</td>
</tr>
<tr>
<td>(mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSS—lambda (mm)</td>
<td>5.7 ± 1.04</td>
<td>8–2</td>
<td>5.9 ± 1.08</td>
<td>5.5 ± 1.05</td>
<td>0.115</td>
</tr>
</tbody>
</table>

Abbreviations: SD, standard deviation; SSS, superior sagittal sinus. Independent t-test was done to compare the difference between the gender. *p < 0.05 was considered as statistically significant.
Table 2 Variations in diameters of SSS between age groups

<table>
<thead>
<tr>
<th>Diameter</th>
<th>SSS—between nasion and bregma</th>
<th>SSS—bregma</th>
<th>SSS—between bregma and lambda</th>
<th>SSS—lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Mean (mm)</td>
<td>SD</td>
<td>Maximum (mm)</td>
<td>Minimum (mm)</td>
</tr>
<tr>
<td>< 20</td>
<td>2.84</td>
<td>0.9</td>
<td>3.8</td>
<td>1.2</td>
</tr>
<tr>
<td>21-30</td>
<td>2.5</td>
<td>0.7</td>
<td>3.4</td>
<td>1.5</td>
</tr>
<tr>
<td>31-40</td>
<td>2.6</td>
<td>0.6</td>
<td>3.2</td>
<td>1.9</td>
</tr>
<tr>
<td>41-50</td>
<td>2.4</td>
<td>0.6</td>
<td>3.2</td>
<td>1.9</td>
</tr>
<tr>
<td>51-60</td>
<td>4.05</td>
<td>1.2</td>
<td>6.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Age</td>
<td>Mean (mm)</td>
<td>SD</td>
<td>Maximum (mm)</td>
<td>Minimum (mm)</td>
</tr>
<tr>
<td>< 20</td>
<td>5.6</td>
<td>0.8</td>
<td>8.0</td>
<td>4.5</td>
</tr>
<tr>
<td>21-30</td>
<td>5.2</td>
<td>0.9</td>
<td>8.2</td>
<td>4.5</td>
</tr>
<tr>
<td>31-40</td>
<td>5.04</td>
<td>0.9</td>
<td>8.3</td>
<td>4.5</td>
</tr>
<tr>
<td>41-50</td>
<td>4.7</td>
<td>1.2</td>
<td>6.3</td>
<td>2.7</td>
</tr>
<tr>
<td>51-60</td>
<td>4.7</td>
<td>1.3</td>
<td>7.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Age</td>
<td>Mean (mm)</td>
<td>SD</td>
<td>Maximum (mm)</td>
<td>Minimum (mm)</td>
</tr>
<tr>
<td>< 20</td>
<td>5.04</td>
<td>1.2</td>
<td>7.0</td>
<td>4.5</td>
</tr>
<tr>
<td>21-30</td>
<td>5.7</td>
<td>1.3</td>
<td>7.0</td>
<td>4.5</td>
</tr>
<tr>
<td>31-40</td>
<td>5.7</td>
<td>1.3</td>
<td>7.0</td>
<td>4.5</td>
</tr>
<tr>
<td>41-50</td>
<td>5.7</td>
<td>1.3</td>
<td>7.0</td>
<td>4.5</td>
</tr>
<tr>
<td>51-60</td>
<td>5.7</td>
<td>1.3</td>
<td>7.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Abbreviations: ANOVA, analysis of variance; SD, standard deviation; SSS, superior sagittal sinus. One way ANOVA was done to determine the difference between the age groups. Post-hoc Tukey test was done to compare between each age groups. *p* < 0.05 was considered statistically significant.
Thus, these findings prove that the SSS does not lie exactly in the midline. The developmental basis for the displacement of SSS is that initially the sinus develops as sagittal plexus; along with these plexuses there appears lot of intercommunicating channels. These intercommunicating channels, enlarges, or diminishes in size that lead to asymmetry in developing SSS. This asymmetry of the sinus leads to the drainage of the sinus toward one side, mostly to the right side, thus, leading to the displacement of the SSS most commonly toward the right side.4,6

Fig. 1 Diameter of superior sagittal sinus (SSS) between nasion and bregma. Red line—Diameter of SSS between nasion and bregma.

Fig. 2 Diameter of superior sagittal sinus (SSS) at nasion. Red line—Diameter of SSS at nasion.
Surgical Recommendations Based on This Study

Craniotomies should be approached carefully in relation to SSS. Usually, sagittal suture is taken as the landmark for SSS. But our study proves that the SSS does not lie exactly in the midline in relation to sagittal suture but deviation is there, usually toward right side. Further in our study, we did not observe any changes in deviation with respect to age groups. Irrespective of age the SSS was
Table 3 Overall frequency of deviation of SSS

<table>
<thead>
<tr>
<th>Landmarks</th>
<th>Deviation</th>
<th>Right</th>
<th>Left</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSS—between nasion and bregma (%)</td>
<td></td>
<td>77</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>SSS—bregma (%)</td>
<td></td>
<td>62</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>SSS—between bregma and lambda (%)</td>
<td></td>
<td>68</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>SSS—Lambda (%)</td>
<td></td>
<td>70</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>SSS—beyond lambda (%)</td>
<td></td>
<td>71</td>
<td>11</td>
<td>18</td>
</tr>
</tbody>
</table>

Abbreviation: SSS, superior sagittal sinus.

Table 4 Comparison of frequency of deviation of SSS between gender

<table>
<thead>
<tr>
<th>Landmarks</th>
<th>Deviation</th>
<th>Male (n = 37)</th>
<th>Female (n = 63)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>Left</td>
<td>No</td>
</tr>
<tr>
<td>SSS—between nasion and bregma (%)</td>
<td></td>
<td>27</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>SSS—bregma (%)</td>
<td></td>
<td>2</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>SSS—between bregma and lambda (%)</td>
<td></td>
<td>24</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>SSS—lambda (%)</td>
<td></td>
<td>30</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>SSS—beyond lambda (%)</td>
<td></td>
<td>26</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Abbreviation: SSS, superior sagittal sinus.

* p-Value—significant.

Chi square test was used to compare the frequency of deviation of SSS between gender.

Fig. 5 Deviation of superior sagittal sinus (SSS). Red line—Deviation of SSS toward left.
deviated more toward the right side at lambda. The Gigli saw or high-speed drill may lacerate the wall of the sinus if the drill is placed within 1 cm of sagittal suture. For example, in the case of unilateral frontal craniotomy, the medial margin of craniotomy lies close to the midline. In this craniotomy, anterior one-third of the SSS is exposed between the nasion and bregma. If there is any injury to SSS, it can be ligated if it is near nasion while ligation is not recommended beyond bregma as it may lead to infarction. The middle one-third of the SSS is exposed in case of anterior transcallosal approach, which lies between nasion and bregma and at bregma. Even in this point the SSS does not lie exactly on the midline. Ascertaining the position of sinus through MRI before neurosurgical interventions are recommended. In a safer side, it is suggested to place the burr holes few millimeters away from the midline either on the same or the opposite side of the craniotomy based on the surgeons perspective. In the similar way, when the posterior one-third of the SSS is exposed between bregma and lambda, and at lambda point for procedures like posterior transcallosal approaches, it is safer to place the burr holes few millimeters away from the midline. Oberman et al after measuring the deviation distance of SSS from midline recommended to place the drill or burr holes at a distance of at least 1.7 cm from the midline.

In case of midline tumors and vascular lesions around third ventricle interhemispheric approach is used. Parafalcine and parasagittal meningiomas are the second most common intracranial meningiomas. Since these tumors are in an intimate relationship with major sinuses and draining veins, their resection requires careful preservation of cortical veins that surround the tumor. The parasagittal meningiomas involving the posterior two-thirds of the SSS pose a major challenge to the neurosurgeon to remove the tumor completely without significant morbidity. However, gross total resection of the tumor is preferred, provided the cortical veins responsible for the collateral drainage are preserved.

Conclusion
Thus, the findings of this study prove that the SSS does not lie in the midline along the sagittal suture. So, the sagittal suture cannot be taken as a reliable landmark to locate the SSS. The sinus deviates more toward the right side. Further, the diameter of the SSS was also estimated. With the advancement in radiological techniques, the diameter and displacement of the SSS can be easily observed with the help of CTV. These findings would help the neurosurgeons in various neurosurgical procedures in the midline along the sagittal suture.

Limitations
We did not compare the parameters in the cadavers due to the feasibility and complexity in the procedure which involves injection of dyes and evaluating the venous sinuses. The postmortem clots in the cadavers would hinder the passage of dye posing difficulty in evaluation.

Authors’ Contribution
R.V. and D.K.V. conceptualized the study. G.S.S., A.K., and N.K. helped in data acquisition. G.S.S. was involved in data analysis and interpretation. G.S.S., R.V., and D.K.V. drafted the manuscript. G.S.S., R.V., D.K.V., and N.K. critically revised the manuscript. All authors provided approval for this study.

Conflict of Interest
None declared.
Acknowledgment

The authors would like to acknowledge the technicians of PACS from department of radiology, JIPMER

References

3 Reis CV, Gusmao SN, Elhadi AM, et al. Midline as a landmark for the position of the superior sagittal sinus on the cranial vault: an anatomical and imaging study. Surg Neurol Int 2015;6