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Skeletal metastases occur in many types of solid malignant
tumors, especially in advanced stage of prostate, breast, and
lung cancers. The resulting bone pain affects patient’s quality
of life and requires effective treatment. Only osteoblastic
bone metastases are suitable for treatment with bone-seek-
ing agents. Typical tumors are prostate cancer with 65 to 85%
of bone metastases, breast cancer with 65 to 75%, and small
cell lung cancer with 34 to 50%, respectively.1 The mecha-
nisms involved in bone pain are poorly understood,2 but are
likely to be a consequence of osteolysis (bone breakdown).3

Infiltration of the bone trabeculae and matrix by tumor
osteolysis is one of the physical factors. Pain may result
from instability-based microfractures and stretching of the
periosteum by tumor growth.4 The pathophysiological
mechanisms of pain include stimulation of free nerve end-
ings in the endosteum by a variety of chemical mediators like
bradykinin, prostaglandin, histamine, interleukin, and tumor
necrosis factor.4,5

Currently, the majority of researchers prefer α emitters,
which are highly effective, requiring one to four deoxyribonu-
cleic acid (DNA) hits to evoke cell death, compared with β
emitters, which require greater than 1,000 DNA hits.6 Alphas
have the advantage of high linear energy transfer and a short
range, enabling moderate bone marrow toxicity. Alphas have
the disadvantage of a short range from40 to100μm.Therefore
alphas can interact onlywith four to six cell lines.7 In therapies
such as prostate-specificmembrane antigen (PSMA) or DOTA-
TOC ([DOTA(0)-Phe(1)-Tyr(3)]octreotide) that guide α emit-
ters directly to tumor cells, the short range can be discussed as
an advantage.8 In therapies like bone pain palliation or micro-
sphere therapy, radionuclides are deposited in the tissue
surrounding the tumor. Here, the short range of α emitters
is considered a disadvantage and a longer range of β emitters
might lead to higher doses of tumor absorbed. A long range
leads to higher rates of crossfire and affects cells in greater
distance fromthesource. It canbesupposed that thehigher the
energyofβ radiation is, thehigher is thebonemarrow toxicity.

Interestingly, clinical data show this neither in a direct com-
parison of 188Re-HEDP (Emax 2.12 MeV) and 153Sm-EDTMP
(Emax 0.81 MeV)9 nor in dose calculation.10 In future, more
dosimetric data of radiation-absorbed doses to tumor and
surrounding tissue are needed to compare therapeutically
relevant α and β emitters.

Apossible reasonfor theoretical and invivodifferences is the
bystandereffect. BlythandSykesdefinedbystander responseas
“radiation-induced, signal-mediated effects in un-irradiated
cells within an irradiated volume.”11 These signal mediated
bystander effects include cell death, DNA damage, chromatid
aberrations, genomic instability, transformation, differentia-
tion, proliferation, gene expression, cell cycle, invasion, and
radio-adaptive responses.12 The primarymechanisms involved
are release of signaling molecules13 and direct intercellular
communicationviagapjunctions.14Cellproximityhasalsobeen
shown to be necessary for proliferative bystander responses.15

Reactive oxygen species, reactive nitrogen species, calcium, and
cytokines have been implicated in bystander signaling.16 Cell
proximity is necessary for proliferative bystander responses.15

Overall survival is the most important outcome for
patients and clinicians. The well-designed randomized
Alpharadin in Symptomatic Prostate Cancer Patients
(ALSYMPCA) trial showed a survival benefit of 3.6 months
for the α emitter 223Ra.17 Trials aiming in determination of
overall survival are limited for β emitters. Biersack et al18

showed in a small study a prolongation of overall survival
from 4.5 to 15.7 months after three cycles of 188Re-HEDP
compared with a single treatment.

An interesting therapeutic strategy may be the combina-
tion of α and β emitters or the combination of tumor- and
bone-guided tracers, for example, 223Ra and 177Lu-PSMA.19

For nuclear medicine to become a key player in pain pallia-
tion and systemic tumor therapy, we need well-designed
trials like ALSYMPCA20 or VISION21 aimed at determining the
overall survival and comparison studies like TheraP22 to
establish our methods.
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