Diffusion-Weighted Imaging and Chemical Shift Imaging to Differentiate Benign and Malignant Vertebral Lesion: A Hospital-Based Cross-Sectional Study

Kaneez Fatima¹ Suprava Naik¹ Mantu Jain² Sanjeev Kumar Bhoi³ Somnath Padhi⁴ Nerbadyswari Deep Bag¹ Ashutosh Panigrahi⁵ Sudipta Mohakud¹

¹Department of Radiodiagnosis, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
²Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
³Department of Neurology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
⁴Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
⁵Department of Haematology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India

Address for correspondence Suprava Naik, Department of Radiodiagnosis, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India (e-mail: drsuprava.rd@gmail.com).

Keywords
► diffusion-weighted imaging
► chemical shift imaging
► fat fraction
► Dixon sequence

Abstract

Objective The aim of this study was to evaluate the role of diffusion-weighted imaging (DWI) and chemical shift imaging (CSI) for the differentiation of benign and malignant vertebral lesions.

Methods Patients with vertebral lesions underwent routine magnetic resonance imaging (MRI) along with DWI and CSI. Qualitative analysis of the morphological features was done by routine MRI. Quantitative analysis of apparent diffusion coefficient (ADC) from DWI and fat fraction (FF) from CSI was done and compared between benign and malignant vertebral lesions.

Results Seventy-two patients were included. No significant difference was noted in signal intensities of benign and malignant lesions on conventional MRI sequences. Posterior element involvement, paravertebral soft-tissue lesion, and posterior vertebral bulge were common in malignant lesion, whereas epidural/paravertebral collection, absence of posterior vertebral bulge, and multiple compression fractures were common in benign vertebral lesion (p < 0.001). The mean ADC value was 1.25 ± 0.27 mm²/s for benign lesions and 0.9 ± 0.19 mm²/s for malignant vertebral lesions (p ≤ 0.001). The mean value of FF was 12.7 ± 7.49 for the benign group and 4.04 ± 2.6 for the malignant group (p < 0.001). A receiver operating characteristic (ROC) curve analysis showed that an ADC cutoff of 1.05 × 10⁻³ mm²/s and an FF cutoff of 6.9 can differentiate benign from malignant vertebral lesions, with the former having 86% sensitivity and 82.8% specificity and the latter having 93% sensitivity and 96.6% specificity.
Introduction

Vertebral lesions in elderly and in patients with known malignancy are quite a common occurrence. It can be due to various etiologies, such as degenerative changes, infections, trauma, and malignancy. The spine is the most frequent site of osseous metastasis in the body. Metastasis from carcinoma breast, kidney, and thyroid is associated with an increased risk of pathological fractures and compressive myelopathy. It is at times difficult to differentiate from benign osteoporotic fracture as a result of decreased bone density, especially in elderly females. Apart from this, trauma, infective spondylodiskitis, and primary vertebral neoplasm also can present with complications such as vertebral fracture and compressive myelopathy. Hence, it is essential to distinguish malignant and benign vertebral lesions as it affects treatment strategy, clinical staging, and prognosis in patients with proven malignancies. Although histopathological diagnosis is the gold standard, it is invasive and associated with its own complications. Also, it is sometimes not feasible, especially if the lesion is located in the cervical spine. A positron emission tomography (PET) scan can be useful in some cases; however, it also has its limitations in differentiating malignant and infective lesions as both may show uptake.

Magnetic resonance imaging (MRI) is an excellent noninvasive method for the assessment of bone marrow lesions with high spatial resolution. Apart from gross morphological data, MRI gives information about cellular and chemical levels. Conventional MRI is highly sensitive in detecting abnormality; however, it lacks specificity. It sometimes can represent a diagnostic conundrum, specifically in case of the elderly patients and in patients with known cases of cancer. The sensitivity of T1-weighted (T1W), T2-weighted (T2W) imaging, and short tau inversion recovery (STIR) imaging is quite high, but the specificity of these sequences to discriminate between benign and malignant lesions is low. This is due to the fact that signal alterations seen in bone marrow edema due to benign metastasis is similar to that observed in bony metastasis.

MRI techniques reflecting distinct aspects of the chemical environment and pathophysiology of vertebral marrow lesions have been put forward to distinguish benign vertebral lesions from malignant vertebral lesions with more accuracy. Diffusion-weighted imaging (DWI) measures the random Brownian motion of water molecules. Studies have shown significantly lower apparent diffusion coefficient (ADC) value in malignant lesions compared with benign lesions. There is a paucity of studies in the literature regarding the correlation of the vertebral lesion with the vertebral marrow fat fraction (FF). In this study, we evaluated the role of DWI and vertebral body FF obtained from chemical shift MRI to differentiate between benign and malignant vertebral lesions.

Material and Methods

This is a cross-sectional hospital-based study performed in a tertiary care teaching institute after obtaining ethical clearance from the institutional ethics committee. Patients older than 18 years having vertebral lesions with or without fractures were included. A sample size of 72 was obtained with a confidence interval of 95%. After obtaining informed consent, the enrolled patients underwent MRI in a 3-T MRI scanner (Discovery MR750W, GE Healthcare) using a 32-channel spine coil. The protocol is discussed in the following section.

Magnetic Resonance Imaging Protocol

The following protocols were used: sagittal T2WI (repetition time [TR]/echo time [TE]: 4,474/85 milliseconds, field of view [FOV]: 28.0 cm, number of excitations [NEX]: 3.00); sagittal T1W (TR/TE: 671/13.5 milliseconds, FOV: 28.0 cm, NEX: 2.00); axial T2WI (TR/TE: 4,209/85 milliseconds, FOV: 28 cm, NEX: 3.00, slice thickness: 3.0 mm, interslice distancing: 0.3 mm); sagittal STIR (TR/TE: 4,333/68 milliseconds, FOV: 28 cm, NEX: 2.00, slice thickness of 3 mm, interslice gap of 0.3 mm); sagittal DWI (TR/TE: 3430/69.1 milliseconds, FOV: 24 cm, b-value: 50 and 800, slice thickness: 4.0 mm, interslice distancing: 0 mm); and IDEAL-IQ (TR/TE: 8.9/4.0 milliseconds, FOV: 40 cm, NEX: 3, echoes: 6, slice thickness: 4.0 mm, interslice distancing: 0.4 mm). Gadolinium-based intravenous contrast was administered on a case-to-case basis when required, and postcontrast T1WI was acquired in sagittal and axial planes.

Computed Tomography–Guided Biopsy

Computed tomography (CT) guided percutaneous biopsy was done from vertebral lesions as per standard management protocol. Under strict aseptic precaution, percutaneous vertebral biopsy using a Jamshidi bone biopsy needle through the transpedicular/posterolateral extrapediculat technique was performed after administration of adequate amount of local anesthesia. Precaution was taken to avoid injury to exiting nerve roots and great vessels. In the presence of multiple lesions, the largest and most approachable lesion was selected, for example, a lumbar vertebral lesion was preferred over dorsal and cervical vertebral lesions. In patients with associated paravertebral soft-tissue component, both bone and soft-

Conclusion

The addition of DWI and CSI to routine MRI protocol in patients with vertebral lesions promises to be very helpful in differentiating benign from malignant vertebral lesions when difficulty in qualitative interpretation of conventional MR images arises.
tissue components were biopsied simultaneously. In patients with associated paravertebral collection, ultrasonography (USG)/CT-guided aspiration was also done as per the feasibility. A sample for microbiological examination was also obtained if an infection was suspected.

In patients with known primary malignancy elsewhere in the body, biopsy was not done if there were multiple vertebral lesions considering the same as metastasis. However, biopsy was done in the solitary indeterminate vertebral lesion in case of known malignancy to guide the clinical staging, treatment planning, and overall prognosis of the patient.

Elderly patients with suspected osteoporotic collapse underwent a dual-energy X-ray absorptiometry (DEXA) scan to measure bone density. A T-score of ≤ −2.5 was considered diagnostic of osteoporosis and biopsy was exempted in these cases. Patients with a history of trauma were also exempted from vertebral biopsy.

Reports of all of the above-mentioned investigations were collected. Patients, in whom biopsy/aspiration was not done, were followed up either with imaging or clinically, depending on the etiology. If the lesion appearance remained the same after 6 months of follow-up without progression or the patient improved clinically, the lesion was considered benign.

Data Collection and Image Analysis
MR images were transferred to the Advantage Workstation Server (AWS), GE Healthcare. Two experienced radiologists having more than 12 years’ experience analyzed the MR images. In case of interobserver variation, final imaging diagnosis was made by consensus. Imaging findings and qualitative and quantitative MRI parameters were recorded. MRI features were correlated with histopathological diagnosis and also with microbiological or DEXA scan reports and with history and clinical follow-up wherever suitable.

Involvement of vertebral bodies, posterior elements, presence of paravertebral or epidural collection, paravertebral soft-tissue lesion, posterior vertebral bulge, cortical disruption, and presence/absence of fracture were noted. Signal intensity of the involved vertebra was qualitatively analyzed by comparing with that of an uninvolved vertebra, on T1W, T2W, STIR, and DWI sequence.

Quantitative analysis of DWI was done by calculating the ADC value using “READY View” postprocessing application. Regions of interest (ROIs) of varying sizes were drawn over the lesion on DWI that corresponded to signal changes on the T1WI and STIR. Three ROIs were drawn over the lesion and the ADC values were obtained. The mean ADC was calculated by averaging them. The ADC values were also obtained from the adjacent normal vertebrae by drawing the ROIs.

The ROI was dependent on the size of the lesion in focal discrete lesions, but in the cases where there was diffuse vertebral marrow involvement, it was drawn as large as possible placed in the antero-central aspect of the vertebral body avoiding the basivertebral venous plexus and endplate degenerative changes. The ROIs varied between 10 and 60 mm² in each lesion.

FF was obtained from the Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation Quantitation (IDEAL-IQ) sequence that is a modified multi-echo Dixon technique. ROIs as placed on DWI were also placed in a similar way in the FF image. Normalized FF was computed by dividing the FF of the involved vertebrae by the FF of the normal-appearing vertebra.

The final diagnosis that was made on the basis of biopsy results or results of at least 6 months of clinical or radiological follow-up. This was used as the “gold standard” to classify the vertebral lesion as benign or malignant.

Statistical Analysis
All the statistical analyses were done using IBM SPSS 29.0 version. Continuous variables were summarized in the form of means and standard deviation (SD) and categorical variables were expressed as frequencies and percentages. Non-parametric variables between two groups were compared using the Mann–Whitney U test. The correlation between two nonparametric variables was assessed using Spearman’s rank correlation coefficient. The chi-squared test was applied for comparing categorical variables between benign and malignant groups. Receiver operating characteristics (ROC) curve analysis was used to find out the cutoff value for ADC, FF, and normalized FF to determine the optimal cutoff.

The diagnostic value of diffusion restriction was examined by two-by-two contingency tables with the ultimate classification of lesions into two broad categories, that is, benign and malignant. The sensitivity and specificity were then calculated.

For all the statistical tests used, the level of significance was set at a p-Value less than 0.05.

Results
A total of 72 patients were included in our study. Out of the total patients enrolled, 39 (45.8%) were males. Details of the demographic findings are given in Table 1. Out of 72 patients, 43 cases were benign and 29 were malignant as per the final diagnosis. CT-guided biopsy was done in 56 patients (out of which 34 turned out to be benign and 22 malignant). The most common presenting complain was back pain in 62 patients (86.1%), followed by lower limb weakness in 6 (8.3%) and inability to walk in 4 (5.6%) patients. Twenty-one of 72 (29.2%) patients showed solitary vertebral lesions; the remaining 51 (70.8%) patients showed multiple vertebral involvements. Eighty-two vertebral lesions were included in the benign category, whereas 63 vertebrae were involved in the malignant category.

Twenty-five of 43 patients in the benign category were of tubercular etiology. Other benign causes of vertebral lesions included pyogenic spondylitis (n = 9), traumatic vertebral fracture (n = 5), and osteoporotic vertebral collapse (n = 4). The most common malignant cause included metastasis (n = 12), followed by multiple myeloma (n = 12), plasmacytoma (n = 3), Ewing’s sarcoma (n = 1), and giant cell tumor (n = 1). Out of 12 patients of vertebral metastasis, 7
Diffusion restriction was noted more commonly in the malignant lesion. FF was reduced in both benign and malignant lesions although to a greater degree in malignant lesions (Figs. 1 and 2). The mean ADC value for benign lesion (1.25 ± 0.27 × 10^−3 mm²/s) was significantly higher than that of malignant lesion (0.88 ± 0.19 × 10^−3 mm²/s; p = 0.001). The ROC curve shows an ADC cutoff of 1.05 × 10^−3 mm²/s can differentiate between benign and malignant vertebral lesion with 86% sensitivity and 82.8% specificity, and area under the curve (AUC) of 0.9 (Fig. 3).

The mean FF of vertebral lesions in the benign group was 12.7 ± 7.49, which was significantly higher than that of the malignant group (4.04 ± 2.6; p = 0.001). The ROC curve for FF shows an AUC of 0.95. Considering a cutoff value of FF of 6.9, benign vertebral lesions can be differentiated from malignant lesions with a 93% sensitivity and 96.6% specificity (Fig. 3).

The mean normalized FF (FF of the vertebral lesion divided by normal-appearing noncontiguous vertebra) of vertebral lesions in the benign group was 0.37 ± 0.24, which was significantly higher than that of the malignant group (0.1 ± 0.06; p = 0.001). The ROC curve for normalized FF shows an AUC of 0.954. Considering a cutoff value of normalized FF of 0.17, benign and malignant vertebral lesions can be differentiated with a 90.7% sensitivity and 89.7% specificity (Fig. 3). Details of the ADC and FF are been given in Table 2.
Discussion

This study describes the imaging findings of vertebral lesions in 72 patients and the role of DWI and chemical shift imaging in distinguishing between benign and malignant vertebral lesions.

Distinguishing benign from malignant vertebral lesions is often a clinical dilemma. The limitations of modalities like plain X-ray, bone scan, CT scan, and MRI in diagnosing benign and malignant lesions have been reported. Bone scintigraphy has high sensitivity but low specificity. Fluorodeoxyglucose-PET (FDG-PET) may distinguish between osteoporotic fractures and malignant fractures; however, it cannot distinguish the inflammatory process from a malignancy as it shows high uptake in both. Another disadvantage is that it exposes patients to ionizing radiation and hence is not recommended in young patients.

MRI is a noninvasive imaging modality that is often used to study the signal intensity of bone marrow as well as the complications like vertebral fracture and compressive myelopathy. On routine MRI, vertebral lesions are usually seen as T1 hypointense signal and T2 hyperintense signal. STIR is even more sensitive in the detection of vertebral lesion because the fat signal of the vertebral marrow is suppressed and even slightest increase in water content stands out prominently. The majority of cases in our study showed

Fig. 1 Magnetic resonance imaging (MRI) of dorsal spine in a 65-year-old man with D11 vertebral lesion. (A) Sagittal T1-weighted imaging (T1WI) and (B) T2-weighted imaging (T2WI) show T1 hypointense and T2 hyperintense lesion involving the D11 vertebra with posterior bulge of the vertebra. The lesion appears hyperintense on (C) diffusion-weighted imaging (DWI) as well as on (D) apparent diffusion coefficient (ADC) map suggesting T2 shine through. (E) Fat fraction (FF) of the lesion was 8.1%. (F) Histopathology shows well-formed, coalescent, epithelioid granulomas comprising multifocal localized collections of epithelioid histiocytes admixed with small mature lymphocytes (hematoxylin and eosin, ×200,) and patchy areas of central caseous necrosis (black asterisk), suggestive of mycobacterial etiology.
T1 hypointensity and T2/STIR hyperintensity. Although MRI is highly sensitive in detecting marrow changes, it lacks specificity because the conventional MRI sequences show similar signal intensity in both benign and malignant vertebral lesions. Some of the coexisting findings may help in narrowing the differentials of a vertebral lesion. Involvement of the posterior elements is common in metastasis; however, spinal tuberculosis often affects the posterior elements of the vertebrae along with the body and intervertebral disk. Isolated involvement of the posterior elements is rare in tuberculosis. A combination of paravertebral collection and posterior element involvement was found in infective lesions. Involvement of the posterior element along with a paravertebral soft-tissue lesion is commonly seen in malignant vertebral lesions. At times, organized collection or granulation tissue may mimic paravertebral soft tissue. Intervertebral disk space is commonly involved in infective lesions, more so in pyogenic spondylodiskitis and also in the later stage of tuberculosis. Intervertebral disk space is almost never involved in metastasis. Many times, a diagnostic dilemma exists, especially when there is isolated vertebral involvement without involvement of the intervertebral disk or the paraspinal and epidural soft tissue or abscesses.

Macroscopic information obtained by routine sequences can be supplemented by DWI, which gives information about tissue organization at the microscopic level. Brownian motion of water molecules is affected due to pathological changes in

![Spinal magnetic resonance imaging (MRI) of a 38-year-old woman with a biopsy-proven plasmacytoma involving the D9 vertebra.](image)
showed higher ADC measurements in benign vertebral lesions. This is akin to many previous studies that demonstrated quantitative diffusion and in visual assessment of hyperintensity on DWI lacks specificity, which is directly proportional to the degree of Brownian motion of water molecules. However, in cases of benign pathologies, there is comparatively free diffusion due to abundance of cytoplasm, loose arrangement of cells and more free water content. The value of DWI in spine imaging has been successfully implied in various clinical situations.

Several studies have analyzed DWI qualitatively for neoplastic and non-neoplastic vertebral lesions. However, visual assessment of hyperintensity on DWI lacks specificity as it can also be caused by active hematopoietic red marrow and inflammation. Quantitative analysis of DWI through measurement of ADC has been tried by many authors. The importance of ADC is that the T2 effect from diffusion images is eliminated and a quantifiable signal is obtained, which is directly proportional to the degree of Brownian motion of water molecules. Sheikh et al. reported a mean ADC value of 0.81 ± 0.19 mm²/s for malignant lesions and 1.2 ± 0.24 mm²/s for benign lesions. This is akin to many previous studies that showed higher ADC measurements in benign vertebral lesions compared with malignant vertebral lesions. We also found a significantly higher mean ADC value in benign lesions compared with malignant lesions (p < 0.001). The results of our study are also in congruence with Allam et al who reported 85.7% sensitivity and 91.3% specificity with a cutoff value of 0.9×10^{-3} mm²/s. Contrary to this, Turna et al reported that ADC measurements were not helpful in differentiating neoplastic from non-neoplastic vertebral lesions and there was considerable overlapping in the two groups. This disparity might have arisen due to the size and placement of ROI and variations in the technique and acquisition of MRI. This could also be due to different stages of the pathological conditions affecting the vertebrae. Lavdas et al reported ADC varies significantly with age; however, we could not find any significant correlation of ADC of vertebral marrow with age. It may be due to the exclusion of patients younger than 18 years. Also, many patients were middle-aged (interquartile range: 39–59.75 years). Another cause could be that the normal-appearing vertebra in some cases as in infiltrative diseases like multiple myeloma may not actually be normal.

The fundamental basis of chemical shift MRI is that hydrogen protons in water and fat precess slightly differently. At 3 T, fat and water protons are in phase with each other at TE of 2.24 milliseconds and out of phase at TE of 1.12 milliseconds. This results in cyclical addition (in phase) and cancellation (out of phase) of signal intensities of water and fat. So the presence of both water and fat molecules in a single voxel results in signal drop on opposed phase imaging. The advantages of CSI include a short acquisition time, high signal-to-noise ratio and no contrast administration.

IDEAL-IQ is a newer fat–water separation method based on chemical shift imaging for assessing bone marrow FF. IDEAL-IQ is a rapid and highly reproducible method to separate fat and water. It is a method that uses the six-echo Dixon method to quantify FF by correcting all the confounding factors like inhomogeneity effects of the main magnetic field, T2* effects, multiple peaks in fat spectrum, T1 effects, and eddy currents, which affect dual-echo chemical shift-encoded imaging.

Estimation of FF from these methods should improve the diagnostic performance of chemical-shift MRI in differentiating neoplastic and non-neoplastic lesions.

Table 3 Quantitative diffusion and CSI parameters of the benign and malignant vertebral lesions

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Benign (n = 43), mean ± SD (range)</th>
<th>Malignant (n = 29), mean ± SD (range)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>1.25 ± 0.27 (0.84–2.61)</td>
<td>0.88 ± 0.19 (0.56–1.53)</td>
<td><0.001</td>
</tr>
<tr>
<td>Normalized ADC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC vertebral lesion/ADC normal-appearing vertebra</td>
<td>2.57 ± 0.78 (1.6–5.6)</td>
<td>2.02 ± 1.16 (1.16–7.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Fat Fraction (%)</td>
<td>12.7 ± 7.49 (3.4 ± 39.7)</td>
<td>4.04 ± 2.6 (0.22–13.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Normalized FF (FF involved vertebra/FF normal-appearing vertebra)</td>
<td>0.37 ± 0.24 (0.12–1.2)</td>
<td>0.1 ± 0.06 (0.0–0.3)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Abbreviations: ADC, apparent diffusion coefficient; CSI, chemical shift imaging; FF, fat fraction; SD, standard deviation.
Kim et al.27 investigated the feasibility of FF in differentiating malignant vertebral replacements from benign red marrow deposition with a T2*–corrected FF map using a 3D volume interpolated breath-hold gradient echo Dixon sequence. They observed that FF and normalized FF can be used to differentiate benign vertebral lesions from malignant vertebral lesions with sensitivity of 85.7\% and specificity of 100\%. FF at a cutoff of 5.26\% had high diagnostic performance (AUC: 0.98). In another study, Yoo et al.26 reported the cutoff of 6.34 with 95\% sensitivity and 95\% specificity for distinguishing between benign and malignant lesions. These are in agreement with our study, where the mean value of FF in the benign group was significantly higher than that of the malignant group allowing differentiation between two types of lesions.

We found a weak positive correlation between the FF of normal vertebrae and age. The FF of the vertebra increases significantly with increasing age.28,29

The ADC value, FF, and normalized FF can adequately distinguish benign vertebral lesions from malignant ones.

The strength of our study is a good sample size and the fact that definitive diagnosis was obtained in most of the cases. However, our study has few limitations. First, lack of histopathological diagnosis in few cases for ethical reasons. Patients with prior definitive diagnosis of primary malignancy elsewhere in the body, history of trauma, and osteoporosis confirmed on DEXA scan were exempted from undergoing biopsy. Second, although we were careful to draw the ROI that best represented the lesion, the readers made a subjective decision on the area of the ROI and the outer margins of the lesion. Third, no subgroup analysis was done in patients with various benign and malignant etiologies.

Conclusion

We conclude that conventional MRI with STIR sequence is highly sensitive in the detection of vertebral lesions; however, it cannot differentiate between a benign and a malignant vertebral lesion. Certain features such as posterior element involvement, para vertebral soft tissue, and collection may help in characterizing a lesion. Advanced imaging modalities like DWI and CSI can be helpful in distinguishing between benign and malignant vertebral lesions with more accuracy and can be added to the routine imaging protocol while dealing with focal or diffuse vertebral lesions.

Informed Consent

Informed consent was obtained from all the participants or their relatives for being included in the study.

Author Contributions

K.F. contributed to data collection, data analysis, literature search, manuscript writing, and manuscript editing. S.N. contributed concept, design, data analysis, literature search, manuscript editing, and manuscript review. M.J. contributed to data collection, data analysis, literature search, manuscript editing, and manuscript review. S.K.B. contributed to data analysis, literature search, manuscript editing, and manuscript review. S.P. contributed to literature search, manuscript editing, and manuscript review. N.D. contributed to literature search, manuscript editing, and manuscript review. A.P. contributed to literature search, manuscript editing, and manuscript review. S.M. contributed to literature search, manuscript editing, and manuscript review.

Funding

None.

Conflict of Interest

None declared.

References

Kim DH, Yoo HJ, Hong SH, Choi JY, Chae HD, Chung BM. Differentiation of acute osteoporotic and malignant vertebral fractures by quantification of fat fraction with a Dixon MRI sequence. Am J Roentgenol 2017;209(06):1331–1339
