Ipsilateral Uterine Artery Access Through Unilateral Transfemoral Approach Using Simple-Curve Catheter

Anupam Lal¹ Rajesh Vijayvergiya² Manphool Singhal¹

¹ Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
² Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Indian J Radiol Imaging

Address for correspondence Manphool Singhal, MD, DNB, FICR, FSCCT, FSCMR, Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India (e-mail: dmsinghal@yahoo.com).

Abstract

Uterine artery embolization (UAE) is a technique for management of various obstetrical and gynecological problems. Transfemoral approach (TFA) is preferred which can be unilateral or bilateral; however, unilateral puncture is preferred due to lesser chances of puncture-related complications as compared to bilateral puncture. UAE through unilateral TFA is possible with use of reverse loop catheters (Roberts uterine catheter [RUC] or Gandras catheter) to access ipsilateral uterine artery. Other way of cannulating the ipsilateral uterine artery is by maneuvering catheters to form Waltman’s loop/Simon’s reverse loop. With advent of RUC, unilateral TFA became standard of care. In the recent past, RUC was retracted from Indian market and its nonavailability had mandated use of either bilateral TFA or use of catheters and techniques used in the past for unilateral TFA. Herein, we describe a technique of doing UAE by unilateral TFA using simple gentle curve catheter (Picard) by making a reverse curve loop.

Keywords

► uterine artery embolization
► transfemoral approach
► 5F-Picard catheter
► 0.035 curved-tipped hydrophilic guidewire
► reverse loop

Introduction

Uterine artery embolization (UAE) through unilateral transfemoral approach (TFA) in absence of commercially available reverse loop catheter (Roberts uterine catheter [RUC]) is challenging. We did UAE by unilateral TFA using simple gentle curve catheter (Picard) in 12 patients with 100% technical success and comparable fluoroscopic times. This article describes this technique in details where a reverse curve loop was made to cannulate uterine arteries (UAs).

Technique Description

Step 1: Right transfemoral puncture followed by 5F arterial sheath placement in right common femoral artery. Insertion of 5F-Picard catheter with 0.035 curved-tip hydrophilic guidewire in abdominal aorta followed by crossing over to opposite common iliac artery (CIA) (►Fig. 1A and B).

Step 2: Placement of guidewire in contralateral superficial femoral artery (SFA) followed by advancement of catheter tip till SFA origin or hip joint level. Removal of guidewire (►Fig. 2).

Step 3: Insertion of guidewire with hard end tip till aortic bifurcation (►Fig. 3A) and gentle push upwards of both guidewire and catheter (►Fig. 3B) together till catheter forms “inverted-U loop” in abdominal aorta (►Fig. 3C). Tip of catheter during this maneuver retracts proximally from contralateral femoral artery to lie within external iliac or CIA (►Fig. 3B). Now, with this maneuver catheter forms a shape akin to RUC and behaves similarly while maneuvering within the pelvic vessels.
Step 4: Gently pull catheter, to advance catheter tip in contralateral left CIA (►Fig. 4A). Catheter tip can then be easily maneuvered into internal iliac artery (IIA) followed by selective cannulation of UA (Fig. 4B). Guidewire can be used as and when desired.

Step 5: After embolization of contralateral UA gently keep pushing catheter till catheter tip lies at aortic bifurcation (►Fig. 5A). Now pull catheter with tip directed to same side of femoral puncture (►Fig. 5B). Further pulling out catheter will bring its tip down distally into ipsilateral CIA (►Fig. 5C). Then, cannulation of IIA and UA (►Fig. 5D) can be done easily.

Step 6: Following embolization of ipsilateral UA, push catheter till its tip lies in lower abdominal aorta (►Fig. 6A).

Pass guidewire and place again in contralateral SFA (►Fig. 6B) and roll over catheter over it and remove the assembly (►Fig. 6C).

Discussion

UAE is an established technique for many gynecological and obstetrical problems.1–6 Usually preferred approach is TFA which can be unilateral or bilateral with equivalent technical success; however, unilateral TFA puncture is preferred due to lesser chances of puncture-related complications as compared to bilateral puncture.7,8

Previously, UAE, through unilateral TFA was possible with formation of Waltman’s reverse loop using a simple curve catheter where reverse loop was made by immersing catheter with reshaping wire in boiling water.9 Other techniques used in the past were creation of Simmons’ reverse curve (akin to Waltman’s loop) using 5F cobra-shaped catheter (Cobra; Terumo, Tokyo, Japan) and hydrophilic polymer-coated 0.032-inch guidewire (Radifocus; Terumo)10,11 or using an especially designed catheter with a suture.12 Few authors have also used 4F Rosch inferior mesenteric catheter (Cordis, Miami, Florida, United States) with acceptable technical success up to 79.2%13 and 91.8%.14 In both these series either bilateral TFA or additional hardware (catheters or microcatheters) were used.13,14

With availability of reverse catheters like Gandras or RUC, UAE by unilateral TFA became popular with RUC being the catheter of choice.6,14–16 However, lately RUC had been retracted from markets because of unknown reasons, forcing the interventional radiologists to use bilateral TFA or unilateral TFA with catheters and techniques used in the past.

At our institution we performed UAE through right TFA approach using 5F-Picard angiographic catheter with 100%...
technical success with acceptable procedure (25–50 minutes) and fluoroscopic time (15–25 minutes). The technique is simple and can be performed in any interventional angiographic suite without any requirement of additional hardware. The key point was to make simple catheter a reverse-curve catheter (like Simmons’ reverse loop) akin to RUC that cannulates all desired branches of IIA on both the sides easily. This was achieved by first placing the catheter tip in contralateral SFA and then passing stiff (hard) end of 0.035 hydrophilic guidewire in proximal ipsilateral CIA near aortic bifurcation and then gently pushing upwards the guidewire with catheter assembly till it forms an inverted loop in abdominal aorta (Figs. 1–3). Once the catheter forms the desired loop in the abdominal aorta, the guidewire is withdrawn and subsequently the catheter tip can easily be maneuvered to cannulate contralateral IIA and UA using floppy end of the guidewire (Fig. 4). Once embolization is done on the contralateral side, the catheter is pushed till the tip lies at
aortic bifurcation and then maneuvered so that the tip lies in ipsilateral CIA, gently pulling the catheter and guidewire assemble together (►Fig. 5) places the catheter in IIA and then UA can be cannulated by maneuvering. The technique thus allows selective cannulation of UAs without requirement of additional hardware, further if so desired a microcatheter can be easily passed through the catheter for superselective cannulation of branches of UAs as the bend that forms is gentle without acute angulations.

Once the embolization is done on both sides the catheter is pushed back in aorta with the tip directed toward contralateral CIA and guidewire passed with floppy end and the catheter passed over it till the loop vanishes and the tip of the catheter lies in SFA. Subsequently, the assembly is withdrawn (►Fig. 6).

A technique similar to our technique has been described in literature by Pelage et al and Costantino et al. Pelage et al10 cannulated contralateral UA without formation of reverse loop and ipsilateral UA was cannulated with formation of Simmons’ reverse loop. Reverse loop was formed by keeping the catheter tip of 5F cobra-shaped catheter (Cobra; Terumo) in contralateral UA and after placement of 0.032-inch hydrophilic polymer-coated guidewire a strong torque was applied to make an inverted loop in aorta and the catheter pulled to cannulate the ipsilateral UA. Costantino et al11 in their article describe cannulation of contralateral UA using microcatheter after placing hydrophilic 5F cobra-shaped catheters (Glidecath; Terumo, Somerset, New Jersey, United States) in IIA; however, the ipsilateral UA was cannulated similar to our technique by forming reverse loop. Our technique vis-à-vis previously described techniques is simpler, safer, and does not require any additional hardware like microcatheters as used by Costantino et al and not associated with any inadvertent complications like arterial injury or dissection which may arise due to strong applied torque (though not reported by Pelage et al). Also, withdrawal of catheter assembly postprocedure by our technique is easy without any chance of knotting of catheter.

Conclusion

Technique described by us for bilateral UA access for UAE by unilateral TFA approach is simple, easy, and cost effective with 100% technical success and does not require any additional hardware. Procedure and fluoroscopic time remain the same as with RUC catheter.
Funding
None.

Conflict of Interest
None declared.

References