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Summary
Objectives: Graph representation learning (GRL) has emerged as 
a pivotal field that has contributed significantly to breakthroughs 
in various fields, including biomedicine. The objective of this 
survey is to review the latest advancements in GRL methods and 
their applications in the biomedical field. We also highlight key 
challenges currently faced by GRL and outline potential directions 
for future research. 
Methods: We conducted a comprehensive search of multiple 
databases, including PubMed, Web of Science, IEEE Xplore, and 
Google Scholar, to collect relevant publications from the past two 
years (2021-2022). The studies selected for review were based 
on their relevance to the topic and the publication quality. 
Results: A total of 78 articles were included in our analysis. We 
identified three main categories of GRL methods and summarized 
their methodological foundations and notable models. In terms 
of GRL applications, we focused on two main topics: drug and 
disease. We analyzed the study frameworks and achievements of 
the prominent research. Based on the current state-of-the-art, we 
discussed the challenges and future directions.
Conclusions: GRL methods applied in the biomedical field 
demonstrated several key characteristics, including the utilization 
of attention mechanisms to prioritize relevant features, a growing 
emphasis on model interpretability, and the combination of 
various techniques to improve model performance. There are also 
challenges needed to be addressed, including mitigating model 
bias, accommodating the heterogeneity of large-scale knowledge 
graphs, and improving the availability of high-quality graph 
data. To fully leverage the potential of GRL, future efforts should 
prioritize these areas of research.
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1   Introduction
The paradigm of evidence-based precision 
medicine has evolved toward the profound 
utilization of large volumes of data, driven 
by the rapid development of high tech-
nologies and the increasing availability 
of biomedical data [1]. A graph is a data 
structure that comprises nodes and edges, 
representing entities and relationships be-
tween them, respectively [2]. Graphs have 
emerged as a major form for describing 
ubiquitous real-life systems, owing to their 
ability to model complex temporal and 
spatial relationships between entities [3, 
4]. Graph-structure data are pervasive in 
biomedicine and healthcare, representing 
information at the molecular level (such as 
chemical structure [5] and gene regulatory 
network [6]), the patient level (such as co-
morbidity network [7]), and the population 
level (such as epidemic network [8] and 
healthcare system [9]). Knowledge graphs 
(KGs), a type of heterogeneous graphs, are 
used to represent networked entities and 
relationships [10], where entities can denote 
real objects or theoretical concepts, and 
relationships indicate their associations. 
Moreover, entities and relationships are 
endowed with types and properties that 
accurately convey their semantics[11]. 
Graphs, together with KGs, support many 
cutting-edge applications in healthcare, 
including drug repurposing [12], disease 
risk prediction [13], and protein-protein 
interaction (PPI) prediction [14], and can 
be used to generate new hypotheses that 
are ultimately translated into clinically 
actionable outcomes.

Over the past two decades, machine 
learning (ML), specifically deep learning 
(DL), has been successful in vast healthcare 
scenarios, such as medical imaging and di-
agnostics [15], drug discovery [16], health 
insurance and fraud detection [17]. However, 
these techniques were mainly designed to 
process Euclidean data, such as electronic 
health records (EHRs), text, and images, 
and may not handle non-Euclidean graph 
data directly [2]. The distinction between 
Euclidean and non-Euclidean data is the 
underlying geometry used to represent the 
data: Euclidean geometry deals with flat, 
two-dimensional spaces, while non-Euclid-
ean geometry studies curved surfaces [18]. 
The key challenge in utilizing graph data 
in ML models is finding a way to represent 
graph structure that is easy for the models 
to learn [19]. Graph representation learning 
(GRL), which embeds raw graph data into 
a low-dimensional space while preserving 
graph topology and node properties, can 
make graph data more amenable to ML [3]. 
GRL is a cutting-edge field of graph algo-
rithms that has attracted significant interest 
from diverse fields, including computer 
science and biomedicine. It has proven to be 
a valuable tool for understanding biological 
systems [20], accelerating drug discovery 
[21], and enhancing disease diagnosis and 
treatment [22, 23]. With the potential to 
transform biomedicine and healthcare, GRL 
provides new insights into complex disease 
mechanism and facilitates the development 
of personalized health plans. However, de-
spite its remarkable success, GRL still faces 
several challenges, such as the need for a bet-
ter theoretical understanding of the methods, 
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improving scalability and interpretability in 
real systems, and ensuring the soundness 
of methodology while maintaining optimal 
empirical performance in applications [24].

To catch the most recent progress in this 
active and fast-growing field, and to shed 
light on the direction of future efforts, we 
conduct this survey. Our survey focuses 
specifically on GRL methods and their appli-
cations. We also identify the key challenges 
that GRL faces and discuss the potential op-
portunities that can further advance the field. 

2   Materials and Methods
This survey aimed to review the latest devel-
opment in GRL research in the healthcare 
field during the past two years (2021–2022). 
To ensure that the analysis was in-depth and 
up-to-date, we conducted a thorough search 
for relevant articles in multiple databases, 
including PubMed, Web of Science, IEEE 
Xplore, Google Scholar, and arXiv. The 
study selection criteria focused on topic 
relevance and publication quality, with pref-
erence given to high-impact factor journals, 
top-tier conferences, and articles with a 
larger number of citations. By employing this 

rigorous approach, we included 78 represen-
tative articles, encompassing both original 
research and reviews. The selected studies 
were of high quality, ensuring a robust un-
derstanding of the latest advancements in 
GRL in the biomedical field. 

3   Advances in GRL Methods
Over the last decade, GRL has emerged as a 
critical and pervasive research area, greatly 
improving the efficiency and flexibility 
of representation learning [19]. There are 
two settings for graph learning patterns: 
transductive learning and inductive learn-
ing (or reasoning) [24, 25]. Transductive 
learning involves observing all data, both 
training and test (with unknown labels), 
during training. The model learns from 
the observed training data and predicts the 
labels of the test data. On the other hand, 
inductive learning is more like traditional 
supervised learning, where the model 
encounters only the training data when 
developing and then the learned model is 
applied to the test data which it has never 
seen before. Transductive learning can 
generate node embeddings for existing 

nodes or suggest new relations (edges) in 
a fixed graph, while inductive learning has 
generalizability to the new graphs.

In this section, we will explore three fun-
damental categories of GRL methods, based 
on the classification defined in a few studies 
[3, 26, 27]. Table 1 presents the principles, 
characteristics, and applicable tasks of these 
three GRL categories. Additionally, Table 2 
lists some notable GRL models that have 
been developed in recent years. 

3.1   Shallow Node Embedding
The purpose of the shallow node embed-
ding is to project nodes onto a latent space, 
which is a multi-dimensional vector space 
learned by a model based on the input data. 
This latent space serves as a summary of 
the local graph structure, and the original 
relations in the graph are then represented 
by the topological relationships of the em-
bedded representation. Node embeddings are 
characterized by an encoding and decoding 
process [26], where the encoder maps each 
node to the latent embedding space, serving 
as an embedding lookup table, while the 
decoder reconstructs a graph statistic for a 
pair of embedded nodes. The optimization of 

Table 1   Principles, characteristics, and applicable tasks of three categories of GRL methods.

Category

Shallow 
node em-
bedding

Graph 
neural 
networks

Generative 
graph 
models

Principles

Project nodes into a latent 
space that summarizes their 
graph positions and local graph 
neighborhoods.

Leverage neural networks to 
learn compact representations 
of graph topology and node 
attributes.

Employ graph neural networks to 
learn representations and gener-
ate realistic graph structures.

Strengths

- Easy to implement and 
interpret

- Can be used for inductive 
reasoning;

- Capture higher-order and 
nonlinear patterns through 
multi-hop propagation.

- Generate graphs with different 
characteristics and properties

Representative methods

DeepWalk [28], node2vec 
[29], struc2vec [30], LINE [31]

GCN [40], DGCN [41], 
Cluster GCN [42], DCNN [43], 
GraphSage [32], MoNet [44], 
GAT [45], GGNN [47], Graph 
LSTM [48] 

VGAE [50], GraphVAE [51], 
JEVAE [52], MolGAN [55], 
GraphGAN [54]

Biomedical Applications

Node classification (e.g., 
protein function pre-
diction), link prediction 
(e.g., drug repurposing)

Node classification, 
link prediction, graph 
prediction.

Molecular graph 
generation.

Characteristics

Limitations

- Does not include node features;
- Rely on embedding lookup tables 

and are transductive reasoning.

- Computationally expensive on 
large graphs;

- Lack of interpretability:

- Can be difficult to reproduce 
the same result due to the high 
sensitivity to the initial random 
seeds for graph generation
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encoder and decoder is intended to minimize 
the loss between the decoded statistic and 
some node-based similarity metrics. Notable 
shallow node embedding methods include 
DeepWalk [28], node2vec [29], struc2vec 
[30], and LINE [31].

Shallow node embedding methods are 
relatively simple to implement and interpret. 
However, their transductive nature makes 
them less suitable for inductive reasoning, 
where the graph structure may change or 
not be pre-defined [32, 33]. Moreover, the 
shallow embedding methods only consider 
the topological structure of the graph as 
input and generate the embedding of nodes 
or edges, without considering any associated 
node and edge attributes.

3.2   Graph Neural Networks
Graph neural networks (GNNs) are neural 
networks designed to operate on graph data 
[24]. By learning compact representations of 
graph elements, their attributes, and super-
vised labels (if any), GNNs surpass shallow 
node embeddings in their ability to perform 
inductive reasoning and capture higher-order 
and nonlinear patterns through multi-hop 
propagation within several layers of neural 
message passing [27, 34]. 

Convolutional neural networks (CNNs) 
are among the most popular DL models 
used in computer vision applications [35], 
and have shown exceptional performance 
in tasks such as object detection [36] and 

image analysis [37, 38]. Although CNNs 
are traditionally used for structured Eu-
clidean data, such as image pixels or text 
sequences, the concept of convolution to 
learn local connections can be adapted to 
non-Euclidean graphs using spectral and 
spatial approaches [2]. In the spectral ap-
proach, graph information is transformed to 
the spectral domain using the graph Fourier 
transform and the eigen-decomposition of 
the graph Laplacian [39], and convolution 
is performed on the graph spectrum. Graph 
convolutional networks (GCN) [40], dual 
graph convolutional network (DGCN) [41], 
and Cluster-GCN [42] are typical GNN 
variants that use this approach. In the spatial 
approach, convolution is performed directly 

Table 2   Recent notable GRL models.

Model Name

SIGN (Scalable inception graph 
neural network) [99]

AGE (Adaptive graph encoder) 
[100]

GraphSAINT (Graph sampling-based 
inductive learning method) [101]

scGNN 
(Single-cell graph neural network) 
[102]

MAGNN (Metapath aggregated 
graph neural network) [103]

HGT (Heterogeneous graph 
transformer) [104]

GCA (Graph contrastive learning 
with adaptive augmentation) 
[105]

GraphAF (flow-based autoregres-
sive model for graph generation) 
[106]

STGD-VAE 
(SpatioTemporal graph disentangled 
variational auto-encoder) [107]

Core Components

GCN

GCN, Laplacian smoothing, 
adaptive learning

GCN, GAT

GCN, heterogeneous graph, 
left-truncated mixed 
Gaussian modeling

GAT, heterogeneous graph

GAT, heterogeneous graph, 
dynamic graph

Contrastive representation 
learning

GCN, autoregressive model

VAE, dynamic graphs, 
Bayesian model

Characteristics and Strengths 

- Used different types and sizes of graph convolutional filters to substitute graph sampling;
- Resulted in fast training and inference on complex graph.

- Designed a Laplacian smoothing filter for GCN to get smoothed features;
- Applied an adaptive encoder to avoid noise in node embedding.

- Sampled small and complete subgraphs across GCN layers to overcome the neighbor explosion 
problem;

- Improved accuracy while lowering training time on large graphs.

- Employed multi-modal autoencoders to iteratively learn graph representation until converging;
- Used a left-truncated mixed Gaussian model to regularize the learned node embedding;
- Provided a valuable framework for general scRNA-Seq analyses

- Applied attention mechanism to aggregate information of intermediate nodes from each metapath;
- Maintained both structural and semantic features for heterogeneous graph embedding

- Calculated attention over meta-relations to model heterogeneous graphs;
- Integrated all the relations from different timestamps and measured their structural temporal 

dependencies to handle dynamicity;
- Improved various downstream tasks on the Web-scale Open Academic Graph.

- Applied an adaptive argumentation to generate the topological and semantic view of the input 
graph with a graph contrastive learning method;

- Adaptively removed unimportant relations and added noise to irrelevant features to learn implicit 
semantic information as well as significant graph structures

- Used an autoregressive model to dynamically generate nodes and edges, and a relational GCN to 
learn node representations;

- Allowed parallel computation to get exact data likelihood, which further improved training 
efficiency.

- Considered time-invariant geometric factors, graph factors, and spatial-graph joint factors in the 
disentangled representation learning to generate new spatiotemporal graphs;

- The first general deep generative model framework for dynamic (spatiotemporal) graphs.

Reported Tasks

Node classification

Node clustering, link 
prediction

Node classification, 
link prediction

Node classification, 
node clustering, link 
prediction.

Node classification, 
node clustering, link 
prediction.

Node classification.

Node classification.

Graph generation.

Graph generation.
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on the topological graph. However, unlike 
the convolution operation on image pixels, 
graph convolution lacks the weight-sharing 
property, and the size of the node’s neigh-
bors is not always the same. To address 
these challenges in the spatial domain, 
several models have been developed, such 
as diffusion-convolutional neural network 
(DCNN) [43], graph sample and aggregate 
(GraphSAGE) [32], and mixture model 
network (MoNet) [44].

In addition to the aforementioned models, 
a number of other state-of-the-art neural net-
works are applicable to graphs. For instance, 
graph attention network (GAT) [45] employs 
the self-attention strategy to assign different 
weights to the neighbors of each node, allow-
ing it to learn node representation on graphs 
with varying node degrees and enabling 
inductive learning. Gated-based models, 
such as Tree LSTM [46], gated graph neural 
network (GGNN) [47], and graph LSTM 
[48], utilize the gate mechanism to facilitate 
long-term information propagation. The gate 
operator allows information to be updated or 
discarded, which can help reduce the noise 
during the information propagation process.

Despite their success in a range of 
graph-based learning tasks, GNNs are often 
criticized for their lack of interpretability. 
As black box models, it can be challenging 
to discern how these networks make predic-
tions or extract meaningful insights from the 
learned representations [2]. Additionally, 
the computational cost of GNNs can be 
prohibitive, particularly when dealing with 
large-scale biomedical graphs comprising 
millions of nodes and edges [34]. This 
constraint can limit their applicability in 
real-world scenarios where computational 
efficiency is critical.

3.3   Generative Graph Models
In recent years, generative graph models 
have emerged as a promising field in GRL. 
Unlike shallow embeddings and GNNs, 
which focus on learning embedding of 
existing graphs, generative graph models 
leverage graph characteristics, such as graph 
structure, node and edge information, to 
generate new graphs that possess similar 
properties to the original graph. 

Two popular generative graph models are 
variational autoencoders (VAEs) and gener-
ative adversarial networks (GANs). VAEs 
utilize stochastic variational inference to 
train an encoder and decoder that can gener-
ate graphs from a learned distribution based 
on a latent representation [49]. Models such 
as variational graph auto-encoder (VGAE) 
[50], GraphVAE [51], and junction tree 
variational autoencoder (JEVAE) [52] are 
examples of VAE-based approaches. On the 
other hand, GANs consist of a generator that 
produces fake samples and a discriminator 
that distinguishes between real and fake data 
[53]. The goal is to increase the likelihood of 
identifying the true samples as real and the 
reconstructed samples as fake. GraphGAN 
[54] and MolGAN [55] are two examples of 
GAN-based generative graph models. These 
generative graph models have demonstrated 
great potential in expediting biomedical 
discoveries, including drug development 
[55] and protein structure construction [56]. 

However, there are still challenges to 
overcome, such as scalability and inter-
pretability, to make the generative graph 
models more applicable to real-world 
scenarios. Additionally, generative graph 
models can be challenging to replicate, 
primarily due to their high sensitivity to the 
initial random seed used during the graph 
generation process [57]. As a result, even 
minor variations in the seed value can lead 
to significant differences in the generated 
graph structure, making it difficult to repro-
duce the same results.

4   Advances in GRL 
Applications for Biomedicine 
From a graph ML perspective, research 
on GRL application can be divided into 
various tasks, including node, triple, and 
graph classification, link (relation) predic-
tion, node and graph clustering, and graph 
generation [26]. Considering the extensive 
range of GRL application studies available, 
we selected two crucial healthcare topics, 
namely drug and disease, to summarize some 
noteworthy studies. Table 3 outlines the key 
components of GRL applications in research 
related to drug and disease.

4.1   Drug Development and 
Related Association Predictions
4.1.1   In Silico Drug Repurposing 
In the field of drug discovery and devel-
opment, in silico drug repurposing, which 
involves the computational identification 
of new indications and targets for already 
marketed drugs [58], continues to be an at-
tractive proposition. Drug repurposing relies 
on de-risked drugs, which have to potential 
to offer lower development costs and shorter 
development life cycles [12]. The primary 
objective of drug repurposing is to identify 
candidate drugs that have a high probability 
of being associated with the therapeutic 
indication of interest [59]. This task can be 
framed as a link prediction challenge that 
aims to identify potential drug-target inter-
actions (DTIs) or drug-disease associations 
with a high level of confidence. 

The common approach for in silico drug 
repurposing involves predicting DTIs. A 
drug target is a protein or other biomolecule 
(such as DNA, RNA, and peptide) to which 
the drug directly binds and which is respon-
sible for the drug’s therapeutic efficacy [60]. 
Peng et al. [61] developed an end-to-end 
learning-based framework (EEG-DTI) that 
employed heterogeneous GCNs for DTI 
prediction. Specifically, a heterogeneous 
network was created by merging multiple 
biological networks. A three-layer GCN was 
then implemented to produce low-dimen-
sional embeddings for drugs and proteins 
using information from their neighbors in 
the heterogeneous network. The drug and 
protein embeddings were concatenated, 
and the inner product was used to calculate 
the drug-protein interaction score (i.e., 
DTI prediction). Li et al. [62] introduced 
a multi-channel GCN and GAT-based 
framework (DTI-MGNN) for DTI predic-
tion, utilizing a topology graph (contextual 
representation), a feature graph (semantic 
representation), and a common representa-
tion of drug and protein pairs (DPPs). Xuan 
et al. [63] proposed a graph convolutional 
and variational autoencoder-based approach 
(GVDTI), which encoded multiple pairwise 
(drug-protein) representations. The pairwise 
representations were then fused by convolu-
tional and fully connected neural networks 
for DTI prediction. Similarly, Hsieh et al. 
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[64] utilized variational graph autoencoders 
with GraphSAGE message passing to gener-
ate drug embeddings and selected the most 
potent drugs for COVID-19. Ding et al. [65] 
employed a relational graph convolutional 
network (RGCN) to predict the drug-protein 
interactions and further predict the blood-
brain barrier permeability of drug molecules. 

In addition to predicting DTIs, another 
approach to in silico drug repurposing is 
predicting drug-disease associations. A deep 
understanding of the mechanism of drug ac-
tion (MDA) is required for drug repurposing, 
which is often explained through biological 
pathways — a series of biochemical and 
molecular steps to achieve a specific function 
or to produce a certain product. To capture 
MDA and identify the critical paths from 
drugs to diseases in the human body, Yang et 
al. [66] proposed an interpretable DL-based 
path-reasoning framework (iDPath) that em-
ployed a multilayer biological network and 
various modules, including a GCN module, 
an LSTM module, and two attention modules 
(the node and path attention). Experiments 
showed that iDPath could identify explicit 
critical paths that were consistent with 
clinical evidence. Nian et al. [67] utilized 
semantic triples in SemMedDB for KG con-
struction and drug-disease link prediction. 
They filtered the most relevant semantic 

triples for Alzheimer’s disease (AD) using a 
BERT-based classifier and some rule-based 
methods, and trained graph embedding algo-
rithms, such as TransE [68], DistMult [69], 
and ComplEx [70], to predict drug/chemical/
food supplement candidates that may be 
helpful for AD treatment or prevention. Cai 
et al. [12] proposed a heterogeneous infor-
mation fusion GCN approach (DRHGCN) 
for drug repurposing, which applied graph 
convolution operations to three networks to 
learn the embedding of drugs and diseases. 
DRHGCN also designed inter- and intra-do-
main feature extraction modules, and a layer 
attention mechanism to further improve the 
prediction performance. The experiment re-
sults demonstrated that DRHGCN identified 
several novel approved drugs for AD and 
Parkinson’s disease.

4.1.2   Drug-Drug Interaction Prediction
Drug-drug interactions (DDIs) occur when 
two or more drugs interact with each other 
and can alter the absorption of one or both 
drugs, leading to delayed, decreased, or 
enhanced effects. These interactions can 
have significant consequences, including 
synergistic effects, where the total effect 
of the drugs is greater than the sum of their 
individual effects, or antagonistic effects, 

where the drugs have opposing effects on 
the body, potentially reducing or blocking 
the effectiveness of one or more of the 
drugs [71]. Adverse effects can also occur 
as a result of DDIs. Synergistic DDIs can 
be beneficial, particularly for cancer therapy, 
because they allow for the use of lower doses 
of chemotherapy drugs while maintaining 
or even enhancing their effectiveness. By 
contrast, antagonistic DDIs may reduce the 
efficacy of medications and require addition-
al or alternative treatments. 

Dai et al. [72] proposed a novel frame-
work for DDI classification using an ad-
versarial autoencoder-based embedding 
approach (AAE). To address the challenge 
of generating high-quality negative samples, 
the authors utilized an autoencoder which 
learned to produce plausible negative trip-
lets for the discriminator while minimizing 
reconstruction errors via the decoder com-
ponent. The discriminator was trained on 
both the generated negative triplets and the 
original positive triplets to produce a robust 
and effective graph representation model. 
To tackle vanishing gradient issues in the 
discrete representation, the authors employed 
the Gumbel-Softmax relaxation and the Was-
serstein distance for training the embedding 
model, which provided a more stable and effi-
cient training process, allowing for improved 
performance and faster convergence.

Identifying synergistic anticancer drug 
combinations is a common scenario in syner-
gistic DDI prediction. To address this, Wang 
et al. [73] proposed a DL-based framework 
called DeepDDS. The framework utilized 
a multilayer feedforward neural network 
(MLP) to obtain the feature embedding of 
gene expression profiles of the cancer cell 
line, and either GAT or GCN to obtain the 
feature embedding of the drug (represented 
as a graph of molecular structures, from 
SMILE). The embedding vectors of the drug 
and the cell line were concatenated and fed 
into a multilayer fully connected network to 
predict the synergistic effect. The study also 
explored the interpretability of the GAT and 
found that the correlation matrix of atomic 
features revealed important chemical sub-
structures of drugs. Yang et al. [74] developed 
GraphSynergy, a GCN-based framework for 
predicting synergistic DDIs. GraphSynergy 
encoded the high-order topological relation-

Table 3   Core elements of KG applications in drug and disease-related research.

Domain

Drug

Disease

Research question

Drug repurposing [61–64], 
drug development [66]

Drug-drug interaction [72–74]

Drug side effect [75]

Disease prediction [13,23,76]

Genetic association [78]

Pathogenic association [79] 

Predicted node pairs

Drug-disease; 
Drug-target/gene/protein.

Drug-drug; 
Drug-drug-cell line.

Drug-disease

Disease

Disease - DNA/miRNA/lncRNA

Disease - microbe/pathogen

Possible input 

Molecular graph of chemical; 
Drug-drug similarity matrix; 
Drug-drug interaction network; 
Drug-gene/protein/disease association network

Clinical feature network

Disease-disease similarity matrix; 
Gene-gene similarity matrix;
Gene expression profile;
disease-gene/protein association;
Protein-protein interaction network.

Microbe-microbe similarity matrix;
disease-microbe association.
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ships in the PPI network between proteins 
that were targeted by a pair of drugs and were 
associated with a specific cancer cell line. 
The pharmacological effects of drug combi-
nations were evaluated by their therapy and 
toxicity scores. An attention component was 
incorporated to capture the pivotal proteins 
that played a part in both the PPI network 
and biomolecular interactions between drug 
combinations and cancer cell lines. 

Bang et al. [75] developed a graph feature 
attention network (GFAN) for predicting 
polypharmacy side effects with enhanced 
interpretability. Polypharmacy refers to the 
concurrent use of two or more different drugs. 
The GFAN model emphasized target genes 
differently for each side-effect prediction, 
making it capable of sensitively extracting 
target genes and providing interpretability. 
The experiments conducted by the authors 
showed that the GFAN model was effective in 
predicting polypharmacy side effects. 

4.2   Disease and Related 
Association Predictions
4.2.1   Disease Prediction  
Disease prediction using EHRs has become 
an area of significant research interest due to 
their increasing availability. EHR-based pre-
diction and classification include predicting 
clinical risks, disease subtyping, and chronic 
disease onset, among others. However, 
conventional ML approaches rely heavily 
on abundant data to train the models, which 
can impede their performance in predicting 
rare diseases with severe data scarcity. Ad-
ditionally, most existing disease prediction 
approaches rely on sequential EHRs, making 
it difficult to handle new patients without 
historical records. 

To overcome these challenges, Sun et al. 
[13] proposed a GNN-based graph encoder 
that leveraged GATs and graph isomorphism 
networks (GINs) to learn highly represen-
tative node embeddings for patients. This 
approach utilized both the external knowl-
edge base (the Human Phenotype Ontology) 
and patients’ EHRs represented in the graph 
structure. The well-learned graph encoder can 
inductively infer the embeddings for a new pa-
tient, enabling the prediction of both general 

and rare diseases. The study demonstrated 
promising results in addressing the scarcity 
of training data for rare disease prediction.

EHRs contain tens of thousands of med-
ical concepts that are implicitly connected. 
A feasible approach to improving EHR rep-
resentation learning is to associate relevant 
medical concepts and leverage these connec-
tions. To this end, Zhu et al. [23] proposed 
a variationally regularized encoder-decoder 
graph neural network (VGNN) for EHRs that 
achieved robustness in graph structure learn-
ing by regularizing node representations. 
Another approach to leveraging connections 
among medical concepts is to exploit diagno-
ses as relational information by connecting 
similar patients in a graph. Rocheteau et al. 
[76] proposed such a strategy by designing 
an LSTM-GNN model for patient outcome 
prediction. The model extracted temporal 
features using LSTM and extracted the pa-
tient neighborhood information using GNNs. 
The results showed that the LSTM-GNN 
outperformed the LSTM-only baseline on 
length of stay prediction tasks on the eICU 
database, indicating that exploiting informa-
tion from neighboring patient cases using 
GNNs is a promising research direction in 
EHR-based supervised learning.

Xia et al. [77] developed a medical con-
versational question-answering system that 
utilized a multi-modal clinical KG as its 
knowledge base to support entity reasoning, 
such as diseases, medical examinations, and 
drugs based on the patient’s symptoms col-
lected by the system. The system is equipped 
with advanced natural language processing 
(NLP) techniques, such as contrastive 
learning, prompt, bi-directional encoder, 
and autoregressive decoder, which helped to 
achieve state-of-the-art performance. With 
the multi-modal clinical KG and advanced 
NLP techniques, the system can answer 
medical questions in a conversational man-
ner, making it a promising tool for assisting 
clinical decision-making and patient care.

4.2.2   Disease-protein/RNA Association 
Prediction
MicroRNAs (miRNAs) are crucial in the 
development of human complex diseases. 
Discovering the associations between miR-
NAs and diseases is essential for both basic 

and translational medicine. To address this, 
Tang et al. [78] developed a multi-view 
multichannel attention GCN (MMGCN) 
to predict potential miRNA-disease as-
sociations. This approach utilized a GCN 
encoder that took multiple similarity graphs 
of miRNA and disease as input, fused their 
neighbor information, and generated their 
embeddings under different views (i.e., 
graphs). The multichannel attention mech-
anism on miRNA and disease prioritized 
important channel embedding and produce 
normalized channel attention features. 
Additionally, a CNN combiner was used 
to convolve the multichannel attention fea-
tures of miRNA and disease, respectively, 
to generate corresponding representations 
for association prediction. The MMGCN 
approach is effective in predicting miR-
NA-disease associations, which could aid 
in the development of novel therapies for 
complex human diseases.

4.2.3   Disease-microbe Association 
Prediction
Human microbes play a critical role in a 
wide range of complex diseases and have 
become a new target in precision medicine. 
In silico identification of microbe-disease 
associations can provide insights into 
understanding the pathogenic mechanism 
of complex human diseases and facilitate 
screening candidate targets for drug devel-
opment. To this end, Long et al. [79] pro-
posed a GAT-based framework, GATMDA, 
for human microbe-disease association 
prediction. The framework leveraged mul-
tiple similarity-based graphs to construct 
input features for microbes and diseases. 
GAT with talking heads was employed to 
learn the representations of microbe and 
disease nodes. To filter out noises and focus 
on more important neighbors, a bi-inter-
action aggregator was utilized to enforce 
the representation of the aggregation of 
similar neighbors. Finally, the inductive 
matrix completion (IMC) was combined 
to reconstruct a bipartite graph to predict 
microbe-disease associations. The proposed 
framework showed promising results in 
identifying potential microbe-disease as-
sociations, highlighting the potential for 
using GRL to facilitate precision medicine.
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5   Challenges and Future 
Directions
5.1   Bias 
Bias refers to the presence of prejudice or 
favoritism toward an individual or a group 
based on their inherent or acquired charac-
teristics when making a decision [80]. When 
an algorithm’s decisions favor or disfavor a 
specific group disproportionately, it is said to 
be biased. GRL methods are widely utilized 
in the biomedical field, but they can be sus-
ceptible to bias. For example, in the case of 
melanoma detection, ML models are trained 
using images from fair-skinned populations, 
primarily from the United States, Europe, 
and Australia. Consequently, these models 
may perform poorly in detecting lesions 
from individuals with different skin colors, 
indicating inherent model bias [81]. 

The issue of bias in algorithms can be 
mitigated at three stages of the ML pipeline 
[82]. At the pre-processing stage, bias can be 
addressed by generating non-discriminatory 
labeled data and obtaining fair data represen-
tations. However, generating non-discrimi-
natory data can be challenging, especially 
for health records that often include sensitive 
features such as sexual identity, race, and 
social determinants of health. At the in-pro-
cessing stage, algorithms could be modified to 
avoid bias, such as by changing the sampling 
strategy and adding regularization terms to the 
training process. For example, FairWalk [83], 
a graph embedding algorithm derived from 
node2vec, partitions neighbors into groups 
based on their sensitive attribute values and 
gives each group an equal probability of be-
ing chosen, thereby removing biases such as 
gender and race to a large extent. However, 
addressing multiple cross-attribute biases in 
networks with richer subgroup fairness still 
poses a challenge. At the post-processing 
stage, bias can be addressed by altering 
the classification threshold to ensure model 
fairness [84]. In the future, developing a 
sensitive information-oriented framework 
for GRL could be beneficial. This framework 
should integrate various modules for different 
subgroups and incorporate background infor-
mation, such as data acquisition methods and 
the creation of training data to address bias in 
biomedical data.

5.2   Interpretability 
The lack of interpretability of GRL models 
poses a challenge in trusting and safely 
utilizing them in sensitive domains such as 
healthcare [85]. To ensure the transparency 
and trustworthiness of graph algorithms, 
these models should offer both accurate 
predictions and human-intelligible expla-
nations. To this end, several types of GNN 
explanation methods have been proposed to 
explain node and graph classification tasks. 
Here, we summarized three categories: 
mask-based methods, such as GNNExplain-
er [86], PGExplainer [87], and ZORRO 
[88]; perturbation-based methods, such as 
probabilistic graphical model (PGM)-Ex-
plainer [89]; and generative model-based 
methods, such as XGNN [90]. Mask-based 
approaches generate a new graph by combin-
ing masks with the original features/edges/
nodes, enabling them to capture important 
information during backpropagation. Pertur-
bation-based methods filter out unimportant 
features using data sampling, and then fit 
an explainable small model like a PGM on 
filtered data for a topological explanation. 
Generative model-based methods generate 
small explainable subgraphs in a node-by-
node way. For instance, XGNN [90] uses a 
reinforcement learning framework to learn 
the probability of growing from a node to a 
subgraph for the explanation. 

One major challenge of using explain-
ability methods is determining how to assess 
their effectiveness. To address this issue, 
many studies have used synthetic data and 
real-world datasets, such as MUTAG [91] 
and MNIST [92], to validate their models. 
However, these validation datasets are often 
relatively small and straightforward, raising 
concerns about whether these explainable 
graph algorithms can be generalized to 
large-scale biomedical graph data. Recently, 
Agarwal et al. [93] proposed an approach for 
evaluating the explainability of GNNs. The 
authors developed a synthetic graph data 
generator, SHAPEGGEN, that can generate 
a variety of benchmark datasets and provide 
ground-truth explanations. 

Furthermore, future efforts could focus 
on exploring novel training strategies to 
explain other tasks, such as link prediction, 
beyond current approaches for addressing 

interpretability issues for classification 
tasks (i.e., node and graph classification) 
[94]. Additionally, incorporating edge-based 
explanations, in addition to node-based ex-
planations, would be beneficial in assisting 
human experts [95].

5.3   Heterogeneity
Biomedical graph data are often heteroge-
nous, i.e., containing diverse types of nodes 
such as diseases, drugs, and genes. Graph 
ML tasks have shown that GNNs perform 
better than traditional methods on diverse 
graph data. However, recent studies suggest-
ed that GNNs, such as GCNs, may have in-
ferior performance in heterogeneous graphs 
than in homogenous ones [96]. To address 
this issue, methods such as heterogeneous 
graph transformer (HGT) [97] and heteroge-
neous graph attention network (HAN) [98] 
have been developed. HGT utilizes meta-re-
lations to parameterize weight matrices for 
heterogeneous mutual attention, message 
passing, and propagations [97]. On the other 
hand, HAN leverages both node- and seman-
tic-level attention to simultaneously consider 
the importance of nodes and meta-paths [98]. 
However, these methods have only been val-
idated on datasets with less than five types 
of nodes, whereas common biomedical KGs 
tend to be more heterogeneous and complex, 
with greater scale. Therefore, newer graph 
ML models that are specifically designed for 
large-scale heterogeneous biomedical KGs 
are still necessary. 

5.4   Availability of High-quality 
Graph Data
GRL algorithms are computationally inten-
sive and require large amounts of data to 
train effectively. The quality and quantity of 
graph data are critical for the performance of 
GRL algorithms. Incomplete or insufficient 
graph data can result in inaccurate em-
beddings, adversely affecting downstream 
tasks. Additionally, since KGs are usually 
constructed manually or semi-automatically, 
the process can be time-consuming, costly, 
and prone to errors, leading to a scarcity of 
high-quality graph data. Therefore, improv-
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ing the quality and quantity of available 
graph data is crucial to unlock the full po-
tential of GRL in biomedical applications.

6   Conclusions
In this survey, we have highlighted the sig-
nificant advancements made in the field of 
GRL in biomedicine. GRL techniques have 
been extensively utilized to bridge major 
gaps in healthcare, enabling researchers 
to unravel complex disease mechanisms, 
accelerate drug discovery, and enhance 
personalized disease prediction and man-
agement. These breakthroughs are also a 
result of interdisciplinary collaborations 
among computer scientists, biologists, and 
health professionals, and their concerted 
efforts to integrate knowledge from diverse 
fields. Looking ahead, we anticipate that the 
development of more robust, interpretable, 
and trustworthy GRL algorithms, along with 
the availability of high-quality graph data, 
particularly well-curated KGs, will continue 
to play a critical role in advancing precision 
medicine. As GRL techniques continue to 
mature, they hold immense promise for 
boosting precision medicine by harnessing 
vast amounts of graph data in a meaningful 
and interpretable way.
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