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Summary
Aims and objectives: To examine the nature and use of auto-
mation in contemporary clinical information systems by reviewing 
studies reporting the implementation and evaluation of artificial 
intelligence (AI) technologies in healthcare settings. 
Method: PubMed/MEDLINE, Web of Science, EMBASE, the tables 
of contents of major informatics journals, and the bibliographies 
of articles were searched for studies reporting evaluation of AI 
in clinical settings from January 2021 to December 2022. We 
documented the clinical application areas and tasks supported, 
and the level of system autonomy. Reported effects on user 
experience, decision-making, care delivery and outcomes were 
summarised. 
Results: AI technologies are being applied in a wide variety of 
clinical areas. Most contemporary systems utilise deep learning, 
use routinely collected data, support diagnosis and triage, are 
assistive (requiring users to confirm or approve AI provided infor-
mation or decisions), and are used by doctors in acute care set-
tings in high-income nations. AI systems are integrated and used 
within existing clinical information systems including electronic 
medical records. There is limited support for One Health goals. 
Evaluation is largely based on quantitative methods measuring 
effects on decision-making. 
Conclusion: AI systems are being implemented and evaluated 
in many clinical areas. There remain many opportunities to 
understand patterns of routine use and evaluate effects on 
decision-making, care delivery and patient outcomes using 
mixed-methods. Support for One Health including integrating 
data about environmental factors and social determinants needs 
further exploration. 
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1   Introduction 
Artificial intelligence (AI) technologies are 
used for a range of tasks requiring pattern 
recognition, reasoning or learning [1]. While 
AI has been studied for more than 50 years, 
its current resurgence is largely driven by 
developments in machine learning (ML) and 
specifically deep learning (DL). Recently, 
these DL methods have achieved unprece-
dented levels of performance in a variety of 
tasks such as language and image genera-
tion, using generative AI methods, including 
generative pretrained transformers (GPTs). 
In healthcare, AI promises to transform care 
delivery as it has the potential to harness the 
vast amounts of genomic, biomarker, and 
phenotype data that are being generated 
across the health system and beyond [2, 3]. 

Indeed, AI technologies should play a 
central role in reaching the goals of One 
Health which seeks to balance and opti-
mise the health of people, animals and the 
environment through surveillance, pre-
vention, and mitigation at local, regional, 
national, and global levels [4, 5]. Adopting 
a One Health approach at the local level, 
for instance, can improve understanding 
of the dynamics of humans, animals, and 
the built-environment to inform infection 
control and prevention programs [6]. An-
other example is the integration of human 
as well as environmental surveillance and 
response systems to assist health systems in 
responding to and mitigating the effects of 
climate change [7]. 

Today, AI is incorporated into a variety 
of clinical systems for detecting findings, 
suggesting diagnoses and recommending 

treatments in data-intensive specialties like 
radiology, pathology and ophthalmology [3]. 
These AIs can aid human decision making – 
from systems that acquire and analyse data, 
provide options for decisions, to systems 
with the capability of making decisions 
entirely on their own [1]. With time, sys-
tems are expected to become increasingly 
autonomous, going beyond making recom-
mendations to autonomously performing 
tasks such as controlling closed loop clinical 
machines like ventilators or insulin pumps, 
triaging patients or screening referrals [8, 9]. 
With the public release of generative AI, their 
applications in assisting clinicians to create 
health records and generate summaries of 
clinical evidence are rapidly emerging [10]. 

To be successful in healthcare, AI must 
perform well in real-world clinical settings. 
Yet there are many complex challenges 
in the “last mile” of implementation that 
may make technically high performing 
algorithms perform poorly in real-world 
settings [11]. A fundamental challenge here 
is that algorithms built using ML may not 
necessarily generalise well beyond the data 
upon which they are trained, making them 
potentially unsafe when used on different 
populations. Even for restricted tasks like 
image interpretation, AI can make erro-
neous diagnoses because of differences in 
the training and real-world populations, as 
well as differences in image capture work-
flows [12]. Such algorithmic risks may be 
exacerbated with generative AI, which can 
produce content that is incorrect, unsafe 
and not grounded in scientific evidence 
[10]. Another last mile challenge relates to 
how well an AI system is embedded within 
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the local sociotechnical context of imple-
mentation, where an organization can be 
viewed as a network of people, processes, 
and technologies [11]. AI systems need 
to be seamlessly integrated into clinical 
workflows and existing clinical information 
systems (CISs) such as electronic health 
records (EHRs) and laboratory information 
systems (LISs). The performance and safety 
of these algorithms is highly reliant on the 
quality of data provided by CISs [13]. 

The aim of this survey is to examine auto-
mation in contemporary CISs to identify the 
range and impact of AI use. We review stud-
ies reporting AI implementation and evalua-
tion in clinical settings to examine progress 
in digitalization and realising the potential of 
AI to support clinicians in delivering patient 
care. Given the volume and rapidly evolving 
nature of the literature, we do not attempt 
to be comprehensive. Rather, we highlight 
clinical application areas and autonomy in 
current AI to discuss opportunities and future 
directions for implementing and evaluating 
AI in real-world settings. In keeping with the 
focus of this Yearbook, we sought to identify 
exemplars of AI systems that integrated 
clinical data with environmental or social 
factors to improve care delivery. 

2   Methods
2.1   Search Strategy and Study 
Selection 
We reviewed studies about ML systems in 
clinical settings published between Janu-
ary 2021 and December 2022. PubMed/
MEDLINE, Scopus, Web of Science and 
EMBASE databases were searched by 
combining the search terms “artificial intel-
ligence”, “machine learning”, “deep learn-
ing”, “natural language processing” with 
“implement*”, “evaluat*” and “clinical”. 
In addition, we hand-searched the table of 
contents of major health informatics jour-
nals including the Journal of the American 
Medical Informatics Association (JAMIA), 
JAMIA Open, Applied Clinical Informatics 
(ACI), Journal of Medical Internet Research 
(JMIR), the International Journal of Medical 
Informatics (IJMI), BMJ Health and Care 
Informatics, NPJ Digital Medicine, and 

BMC Medical Informatics and Decision 
Making. Studies about the development and 
validation of ML models on historical data 
sets were excluded. The search was limited to 
English language articles and grey literature 
was excluded. 

2.2   Data Extraction, Summarising 
and Reporting Findings 
For each included study, we extracted infor-
mation about the authors, year of publication, 
clinical area, setting, CIS integration, study 
design and the effects of AI interventions. 
Study areas were classified by the country in 
which they were conducted, using the United 
Nations’ definition [14]. Exemplars of AI 
systems that integrated clinical data with 
social determinants or environmental factors 
including animal health were identified. 
Sociotechnical and ethical considerations 
for the use of AI in clinical settings were 
similarly identified. In addition, information 
about the clinical task and AI system tasks 
was extracted and used to examine the level 
of AI autonomy. 

Clinical task. Clinical tasks supported by AI 
were categorised into [15]: 
a)	 Diagnosis: assisting with the detection, 

identification or assessment of disease, 
or risk factors; 

b)	 Triage: assisted with prioritising cases for 
clinician review, by flagging or notifying 
cases with suspected positive findings of 
time-sensitive conditions, such as stroke; 

c)	 Procedure: assisted users performing 
diagnostic or interventional procedures; 

d)	 Treatment: provided recommendations 
for therapy; 

e)	 Monitoring: assisting clinicians to mon-
itor patient trajectory over time.

Level of autonomy. The level of autonomy 
was examined using a previously published 
three-level classification based on how clin-
ical tasks are divided between the clinician 
and AI [15]: 
1.	 Autonomous information: In these 

systems, there is a separation between 
AI and clinician contributions to a task, 
with the AI contributing information that 
clinicians can then use to make a decision, 

e.g., an imaging system that provides a 
coloured imaging display to help a clini-
cian differentiate human tissues. 

2.	 Assistive: These AIs overlap in capability 
with clinicians, but clinicians provide the 
final decision. For example, clinicians 
confirm or approve AI provided infor-
mation or decisions, e.g., a system assists 
clinicians to detect osteoarthritis from a 
knee X-ray image with a disclaimer that 
the system should not be used without a 
full patient evaluation. 

3.	 Autonomous decision: Here, the AI 
makes the decision for a clinical task, 
which can then be enacted by clinicians or 
the AI, e.g., a system screens retinal im-
ages for diabetic retinopathy in primary 
care with the result used to make patient 
referral decisions. 

To determine the level of autonomy, we 
examined the AI task, the stage of human 
information processing automated by the 
AI [9], and the system inputs and outputs. 
The clinical use case was examined to 
assess whether clinicians needed to verify 
decisions provided by the AI (assistive) or 
could rely on the AI information or decisions 
(autonomous). Classification of the stage 
of human information processing and level 
of autonomy was performed by FM and 
reviewed by DL. 

Reported effects of AI interventions 
were categorised (into user experience, 
decision-making, care delivery and patient 
outcomes) based on an established frame-
work called the information value chain 
[16], which separates the multiple steps from 
system use to impacting clinical outcomes 
- interacting with AI, receiving new infor-
mation, decision-making, care delivery. A 
narrative synthesis then integrated findings 
into descriptive summaries.

3   Results
We identif ied 62 studies examining AI 
systems in clinical settings in 19 countries 
(Appendix). Most were conducted in hos-
pitals (Figure 1; Table 1; 73%, n=45) in 
high- and upper middle-income nations, 
specifically the United States (US) (Figure 
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1; n=22) and China (n=12). Studies largely 
used quantitative designs (74%, n=46) to 
evaluate the effects of AI in clinical settings 
and were predominantly focussed on assess-
ing effects on decision-making (66%, n=41); 
only four were randomised controlled trials 
(RCTs). While none of the studies explicitly 
addressed the goals of One Health, consid-
eration of the United Nations Sustainable 
Development Goals as well as social deter-
minants and environmental factors such as 
the socioeconomic status and traffic volume 
was evident in a few studies [17, 18]. Aside 
from research ethics, none of the studies 
reported measures to consider or address 
ethical issues (e.g., algorithmic fairness) 
around the use of AI in clinical settings. 

Most studies were focussed on AI for 
diagnostic (n=37) and triage tasks (n=10). 
Treatment, procedures and monitoring 
were less common. ML algorithms were 
commonly employed to assist in analysing 
clinical information (information analysis; 

n=15) and in selecting decisions (decision 
selection; n=39). Most systems were assis-
tive (65%), requiring users to confirm or 
approve AI provided information or deci-
sions covering 24 clinical areas. Integration 
with CISs including EHRs and LISs was 
described in some studies (n=22). In the 
following sections, we provide a summary of 
these studies by clinical area and summarise 
effects on decision-making, care delivery 
and patient outcomes. 

3.1   Cancer
Nine studies focussed on AI for diagnosis 
and monitoring of different cancers. Wu et 
al. [19] conducted an RCT to demonstrate 
the effectiveness of real-time assistance for 
detection of early gastric cancer involving 
1,050 patients at five hospitals in China. 
Compared with control, fewer lesions were 
missed in the AI group (mean 5 vs. 10). The 

AI correctly predicted early and advanced 
gastric cancers (accuracy: 85%, sensitivity: 
100%, and specificity: 84%).

Another Chinese study examined effects 
on decision-making and care delivery. Peng 
et al. [20] conducted a prospective cohort 
study to demonstrate the efficacy of AI for 
detecting malignant thyroid nodules. Use 
of AI by 12 radiologists to interpret 366 
ultrasound images and videos was shown to 
improve accuracy compared to unassisted 
interpretation (AUROC: 0.837 to 0.875), and 
projected to reduce the number of fine nee-
dle aspirations (62% to 35%) and decrease 
missed malignancy (19% to 17%).

Using mixed-methods, Calisto et al. [21] 
assessed the use and usability of a breast 
screening AI via a clinical simulation study; 
45 radiologists completed three randomly se-
lected cases from a set of 289. The study was 
informed by human-AI design guidelines 
and specifically examined the impact on clin-
ical workflow as well as understanding, trust 

Fig. 1   Geographic distribution of AI studies reviewed in this survey (n=62).
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300 patients found that AI assistance in-
creased detection of adenomas and serrated 
polyps during colonoscopy in comparison 
to historical controls, but the findings were 
not statistically significant. Ou et al. [24] 
demonstrated that AI-assisted analysis of 
urine cytology outperformed the conven-
tional method, with improved sensitivity 
(92% vs. 87%) and NPV (97% vs. 95%). 
Nasir-Moin et al. [25] showed that AI for 
interpretation of 100 colorectal polyp sam-
ples significantly improved pathologists’ 
classification accuracy compared with stan-
dard microscopic assessment (74% to 81%). 
Duan et al. [26] demonstrated improved 
image quality, reduced noise and processing 
time for CT images to assess colon cancer. 
Aimed at primary care physicians in Brazil, 
Giavina-Bianchi et al. [27] demonstrated 
algorithms for melanoma screening using 
both dermascope and smart phone images 
(accuracy: 89%, 85%; sensitivity: 91%, 
89%; specificity: 89%, 83%). 

3.2   Radiology
Nine studies examined systems for a variety 
of clinical areas in hospital and outpatient 
radiology departments. Taking a theory driv-
en approach, Rabinovich et al. [28] used the 
Technology Acceptance Model to evaluate 
user satisfaction and actual use of an assis-
tive system for chest x-ray interpretation in 
an Argentinian emergency department (ED) 
over 5-months. The system was used for 
15% of studies (n=1,186), with an average 
of eight accesses per day. Physicians and 
radiology residents had similar perceptions 
about system usability, but differed on output 
quality and usefulness.
Also using mixed-methods, Chonde et al. 
[29] studied the use and utility of an auton-
omous radiology examination instruction 
system called RadTranslate. The AI was 
integrated into imaging workflows for chest 
radiography at a COVID-19 triage outpatient 
centre that served a predominantly Span-
ish-speaking Latino community in the US. 
During the 63-day test period, technologists 
voluntarily switched to the system to provide 
instructions in Spanish. The system was 
found to reduce strain on medical interpret-
ers and shortened examination length. 

Table 1   Characteristics of the 62 studies about AI systems in clinical settings included in this survey.

*Studies used one or more evaluation measures.

Characteristic 

Country classification 
high-income
upper middle-income
lower middle-income
low income

Clinical task
diagnosis
triage
treatment
procedures
monitoring

Stage of human information processing
information acquisition
information analysis
decision selection
action implementation

Level of autonomy
assistive
autonomous decision
autonomous information

Setting
hospital
primary care
multiple settings
outpatient
simulation centre

Study design
quantitative
mixed-methods
qualitative

Evaluation measures*
user experience
actual use
decision-making
care delivery
patient outcomes

n

45
15
1
1

37
10
6
5
4

8
15
39

40
10
12

45
7
5
3
2

46
12
4

12
3
41
9
6

%

73
24
2
2

60
16
10
8
6

13
24
63

65
16
19

73
11
8
5
3

74
19
6

19
5
66
15
10

and acceptance of the AI. It found use of the 
system decreased false positives by 27% and 
false negatives by 4% while decreasing the 
time-to-diagnose by 3 min per patient; 91% 
of participants were satisfied with the AI. 

The remaining six studies focussed on 
decision-making. Martins Jarnalo et al. 
[22] evaluated a commercial system for 

detecting pulmonary nodules in computed 
tomography (CT) images. When integrated 
into the clinical workflow of a Dutch ra-
diology department, performance matched 
the vendor specification; (sensitivity: 88%, 
false-positive rate: 1.04 per scan and NPV: 
95%). Quan et al. [23] assessed use of AI 
during colonoscopy. Their study, involving 
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Two studies examined effects on de-
cision-making and care delivery. Duron 
et al. [30] reported on the utility of AI to 
detect missed fractures in posttraumatic 
radiographs. 18 radiologists and emer-
gency physicians were asked to detect and 
localise 600 fractures with and without AI 
highlighting of fractures. AI improved the 
sensitivity of physicians by 9% and the 
specificity by 4% and reduced the average 
number of false-positive fractures per 
patient by 42% and mean reading time by 
15%. Schmuelling et al. [31] assessed the 
impact of a triage system that detected and 
alerted radiologists about ED cases with 
suspected pulmonary embolism on CT 
angiograms. While the study demonstrated 
good diagnostic accuracy (sensitivity 80%, 
specificity 95%, PPV 82%, and NPV 94%), 
there was no effect on report communica-
tion times and patient turnaround 9-months 
post-implementation. 

Three studies examined assistive AI for 
chest x-ray and CT interpretation. Seah et 
al. [32] evaluated a comprehensive system 
that was trained to identify and highlight 
127 radiological f indings by asking 20 
radiologists to review 2,568 cases with and 
without assistance in a controlled setting. 
The AI was shown to improve classification 
accuracy in 102 findings. Zhang et al. [33] 
investigated accuracy and efficiency in de-
tecting rib fractures by asking radiologists 
to interpret CT images unassisted, assisted 
and with the AI as a second reader. AI as a 
second reader was found to improve detec-
tion accuracy (up to 6% more rib fractures) 
and reading efficiency (time reduced by 34-
36%). Focussing on junior radiologists, Liu 
et al. [34] compared the diagnostic accuracy 
of an AI to identify rib fractures in chest 
CT images with and without assistance 
demonstrating improved sensitivity and 
reduced reading time by ~1 min per patient 
without decreasing the specificity.

Taking a qualitative approach, Lee et 
al. [35] describe their experiences in im-
plementing an assistive AI for chest x-ray 
interpretation in a South Korean hospital. 
Both accuracy and immediate availability of 
results was reported to be critical, along with 
an explainable visualisation of results and 
the ability to configure software platforms 
for data presentation.

Focussing on trainees, Shiang et al. [36] 
surveyed 15 residents about their use of a 
commercial AI in a US residency curricu-
lum. Here, residents were given access to 
an autonomous system that analysed CT 
images and notified clinicians about cases 
with suspected positive findings of pulmo-
nary embolism, intracranial haemorrhage, 
and acute cervical spine fractures. Most 
residents (92%) supported incorporating 
AI into the curriculum and found it useful 
for triage (83%) and troubleshooting (67%), 
rather than for diagnostic purposes of speed 
(42%), accuracy (33%), or diagnosis deter-
mination (17%). 

3.3   Triage
Six studies focussed on ED triage support. 
Hinson et al. [37] undertook a staged 
evaluation to assess an AI that provided a 
COVID-19 Clinical Deterioration Risk Level 
(1–10) in real-time based on EHR data. 
Prospective validation over 18-months at 
five EDs including an initial silent deploy-
ment demonstrated ML model performance 
for prediction of critical and inpatient care 
(AUC: 0.85–0.91; 0.80–0.90). Total mortal-
ity was reduced among high-risk patients.

Also focussing on COVID-19, Soltan et 
al. [38] evaluated a screening system in a 
United Kingdom ED. Automated identifi-
cation using routinely collected data was 
reported to detect COVID-19 in 45 min, 61 
min sooner than a lateral flow device, and 6 
h 52 min (90%) sooner than PCR. Classi-
fication performance was high (sensitivity 
87%; specificity 85%; and NPV 100%). 
The AI correctly excluded infection for 58% 
patients who were triaged by a physician to 
a COVID-19 suspected area but went on to 
test negative by PCR.

For chest pain, Wang et al. [39] demon-
strated improved clinical decision-making 
and triage. Automated detection of ST-el-
evation myocardial infarction (STEMI) on 
electrocardiography (ECG) and clinical 
risk assessment (ASAP score) was reported 
to shorten the time to treatment (door-to-
balloon time: 64 min to 53 min). Among 
patients with an ASAP score of 3 or higher, 
the median door-to-ECG time decreased (30 
min to 6 min).

In a clinical simulation, Kim et al. [40] 
showed use of AI by ED clinicians for chest 
x-ray interpretation and decision-making 
improved their sensitivity to abnormalities 
regardless of experience (AUROC=0.801). 
Also focussed on decision-making, Ivanov 
et al. [41] demonstrated AI improved the 
accuracy of nursing triage in a US urban 
community hospital (paediatric: 54% to 
67%; adult: 62% to 78%). Jordan et al.’s 
[42] qualitative examination of the impact of 
cultural embeddedness of this system found 
that although there was initial scepticism, 
the AI grew to be perceived as a safety net 
for triage decision-making among nurses.

3.4   Radiotherapy
Five studies examined autonomous and as-
sistive AI for segmentation of organs at risk 
(OAR), treatment plans for breast cancer 
and risk assessment during therapy. Using 
mixed methods, Wong et al. [43] evaluated 
an AI-based auto-segmentation for central 
nervous system, head and neck, and prostate 
radiotherapy (RT) planning at two Canadian 
cancer centres. AI generated plans for 551 
cases, required minimal edits and resulted 
in a positive user experience. Also using 
mixed-methods, Byun et al. [44] assessed 
an auto contouring system to delineate OAR 
for breast radiotherapy with an expert group. 
Performance of the AI was comparable with 
manual contouring by experts and was sig-
nificantly faster (mean times for nine OAR: 
37 min for manual vs. 6 min for corrected 
auto contours). The survey found good user 
satisfaction. 

For prostate radiotherapy, Cha et al. [45] 
demonstrated clinical utility of AI for MR-
based planning with 65% of cases requiring 
no more than minor edits, and a time saving 
of 12 min (30% of total contouring time) 
for physicians. Kneepkens et al. [46] found 
that although automatically generated plans 
resulted in slightly higher doses, they were 
clinically acceptable (AI: 90-95% vs. man-
ual: 90%) and time-efficient.

Focussing on implementation, Hong et 
al. [47] examined the challenges with using 
EHR data to conduct an RCT of an AI to 
identify patients at high risk for ED visits 
and hospitalisation during cancer radiation 
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therapy. They found data extraction and the 
need for manual review required significant 
time for implementing RCTs. Limited data 
availability through the standard clinical 
workflow and commercial products were 
seen to be a barrier.

3.5   Mental Health
Four studies examined AI for diagnosis 
and treatment of mental health conditions. 
Three mixed methods studies related to an 
AI that operationalised Canadian guide-
lines for depression treatment and provided 
clinicians with patient-specific remission 
probabilities for different treatment options 
[48-50]. Of these, two involved a high-fi-
delity clinical simulation with 20 staff or 
residents in psychiatry or family medicine 
completing three 10-min clinical interactions 
with standardised patients portraying mild, 
moderate, and severe episodes of major de-
pressive disorder. In the first, Benrimoh et 
al. [48] focussed on ease of use and impact 
on physician-patient interaction. Clinicians 
indicated a willingness to use the tool in 
real clinical practice, placed a significant 
degree of trust in the system’s predictions 
to assist with treatment selection, and its po-
tential to increase patient understanding and 
trust. The second study focussed on utility; 
Tanguay-Sela et al. [50] reported 60% of 
physicians perceived the tool to be useful for 
treatment-selection, with family physicians 
perceiving the greatest utility. 50% indicated 
they would use the tool for all patients with 
depression, with an additional 35% noting 
that they would reserve the tool for more se-
vere or treatment-resistant patients. The tool 
was also perceived to be useful in discussing 
treatment options with patients. Popescu et 
al. [49] assessed feasibility of using the tool 
during consultation by examining change in 
appointment length. Use of the tool over 11 
months did not increase appointment length; 
most patients and physicians reported that 
the tool was easy to use and trustworthy 
but there were mixed perceptions about its 
impact on the patient-clinician relationship. 

Focussing on suicide risk, Wilimitis et 
al. [51] evaluated automated detection in 
clinical settings by combining predictions 
from the Columbia Suicide Severity Rating 

Scale with a real-time ML model. Combined 
models outperformed the model alone for 
risks of suicide attempt and suicidal ideation 
in a cohort study of 120,398 adult patient 
encounters in the US. 

3.6   Cardiovascular Disease
Three quantitative studies examined as-
sistive and autonomous AI for diagnosis 
and procedures. Yao et al. [52] undertook 
a pragmatic RCT of an AI to detect and 
notify clinicians about patients with sus-
pected findings of low left ventricular ejec-
tion fraction. The study involving 22,641 
patients across diverse practice settings 
demonstrated an increased identification 
of low ejection fraction within 90 days of 
the ECG (control: 1.6% vs. intervention: 
2.1%). Edalti et al. [53] evaluated two 
algorithms to improve image quality and 
reduce noise in MRI images showing 
automated acquisition reduced operator 
dependence and was 13% faster compared 
to manual planning of cardiac scans. Chen 
et al. [54] demonstrated potential of ECG 
interpretation assisted by a DL algorithm to 
improve diagnosis of cardiovascular events 
in patients with heart failure. 

3.7   Dermatology
Three studies examined assistive and au-
tonomous AI for diagnosis and monitoring. 
Pangti el al. [55] undertook a large-scale 
study involving 5,014 patients across a 
wide variety of clinical settings in India 
to demonstrate the utility of a smartphone 
mobile app as a point-of-care tool for 
diagnosis of 41 skin conditions in people 
of colour (accuracy: overall 75%; top 3: 
90%). Jain et al. [56] demonstrated another 
AI to help clinicians diagnose skin condi-
tions more accurately in US primary care 
practices. Here, 20 physicians and 20 nurse 
practitioners reviewed 1,048 cases with and 
without assistance of an AI system that pro-
vides a differential diagnosis from images 
of skin conditions and medical history. AI 
assistance was significantly associated with 
higher agreement with diagnoses made by a 
dermatologist panel, with an increase from 

48% to 58% for physicians and 46% to 58% 
for nurse practitioners. For monitoring fine 
lines, Yoelin et al. [57] examined utilisation 
and functionality of an AI platform to au-
tomatically measure and score fine lines by 
asking 71 patients to use the system over 14 
days. The AI was shown to evaluate photos 
on a comparable level of accuracy and was 
more consistent than qualified raters. 

3.8   Diabetic Retinopathy
Three studies examined autonomous AI 
for diagnosis of diabetic retinopathy in 
different settings. Ipp et al. [58] undertook 
a multicentre cross-sectional diagnostic 
study including 942 individuals with dia-
betes to demonstrate safety and accuracy. 
The system accurately detected both more-
than-mild diabetic retinopathy (mtmDR) 
and vision-threatening diabetic retinopathy 
(vtDR) without physician oversight or need 
for dilation in most individuals (mtmDR 
sensitivity: 96%, specificity: 88% and vtDR 
sensitivity: 97%, specificity: 90%). Hao et 
al.’s [59] evaluation involved 3,933 patients 
in a community hospital in rural China. The 
AI was demonstrated to have a sensitivity 
of 81% and specificity of 94% and was con-
sistent with screening by ophthalmologists. 
Also in China, Ming et al. [60] examined 
feasibility of deploying AI in primary care. 
The system which was capable of both de-
tecting and grading according to the Inter-
national Clinical Diabetic Retinopathy scale 
was demonstrated to have high specificity 
(98%) and acceptable sensitivity (85%).

3.9   In-hospital Deterioration
Three US studies examined assistive AI 
for detection of in-hospital deterioration. 
Martinez et al. [61] described an early 
warning system that combined statistical 
modelling with ML to identify patients at 
risk of deterioration. Deployment across 19 
hospitals was associated with decreases in 
mortality (10% vs. 14%), hospital length of 
stay, and intensive care unit length of stay. 
The study estimated that more than 500 
deaths could be prevented each year by the 
intervention. Winslow et al.’s [62] deploy-
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ment in medical-surgical wards across a 
multicentre health system over 10 months 
was associated with a decrease in hospital 
mortality (9% vs. 14%).

Focussing on sociotechnical dimensions, 
Schwartz et al.’s [63] application of the hu-
man-computer trust conceptual framework 
to explore clinician trust is particularly 
noteworthy. Here, nurses and prescribers 
from 24 acute and intensive care units in two 
hospitals were interviewed about their trust 
in the predictive AI. The study reported that 
trust was influenced by clinician perceptions 
about being able to form a mental model 
and predict future system behaviour as well 
as the system’s technical capabilities to per-
form tasks accurately and correctly based 
on the information that is input. Trust was 
also influenced by actionability of system 
recommendations, scientific and anecdotal 
evidence as well as fairness in system pre-
dictions. The findings were largely similar 
between nurses and prescribers.

3.10   Stroke
The three studies of assistive and auton-
omous AI for stroke triage and diagnosis 
covered effects on decision-making, care 
delivery and patient outcomes. Gunda et 
al. [64] used mixed-methods to examine 
automated analysis of CT angiography at a 
primary stroke centre in Hungary. Use of AI 
over a 7-month period with 399 patients was 
reported to increase detection of thrombol-
ysis (11%-18%) and thrombectomy (2.8%-
4.8%). There was a trend towards shorter 
door-to-needle times (44–42 min) and CT-
to-groin puncture times (174–145 min); and 
a non-significant trend towards improved 
outcomes with thrombectomy. Among 
physicians, the system was perceived to 
increase decision-making confidence and 
improved patient flow. Yahav-Dovrat et al. 
[65] evaluated the detection accuracy of an 
AI to detect large-vessel occlusions on CT 
angiograms and notify the treatment team in 
real-time via a dedicated mobile application 
at an Israeli stroke centre. The system was 
found to be highly accurate when used to 
scan all head and neck CT angiograms over 
a 15-month period. Hu et al.’s [82] exam-
ination of the safety and effectiveness of an 

AI to improve the quality of CT perfusion 
images reported improvements in image 
quality and thrombolytic therapy of acute 
cerebral infarct (14%). 

3.11   Asthma, Sepsis, Venous 
Thromboembolism, Urinary Tract 
Infection
Four studies demonstrated effects of as-
sistive AI on care delivery and/or patient 
outcomes in asthma, sepsis, and venous 
thromboembolism (VTE), as well as treat-
ment of urinary tract infection. Seol et al. 
[18] conducted an RCT of an AI that pro-
vided a quarterly report to clinicians with 
relevant clinical information about asthma 
management along with a machine learned 
prediction for risk of exacerbation based on 
EHR data, patient-reported outcomes and 
non-clinical data (e.g. traffic volume and 
socioeconomic status). The study involving 
184 patients in a US primary care paediatric 
practice found no difference in frequency 
of asthma exacerbations between the two 
groups (intervention: 12% vs. control: 15%), 
although the AI significantly reduced time 
for reviewing EHRs for asthma management 
(3 min vs. 11 min per patient). Another AI 
that leveraged the EHRs was evaluated by 
Adams et al. [66], here a real-time risk score 
was generated and used to alert clinicians 
about patients at risk of sepsis. A trial of 
this system at five hospitals was reported 
to reduce in-hospital mortality (treatment: 
15% vs. comparison: 19%), organ failure and 
length of stay compared with patients whose 
alert was not confirmed by a provider within 
3 hours. Taking a similar approach, Zhou et 
al. [67] evaluated an AI to identify and notify 
clinicians about patients at risk of VTE in 
hospital. AI-enabled automated assessment 
of VTE risk every 6 hours or upon EHR 
updates was found to reduce the rate of VTE 
during hospitalisation by 19% and increased 
anticoagulant drug use by 14%. 

In primary care, Herter et al. [68] ex-
amined an AI that provided general practi-
tioners with expected outcomes and support 
information about antibiotics for urinary 
tract infections based on the Dutch College 
of General Practitioners’ guidelines. A pro-

spective observational study in 36 primary 
care practices over a 4-month period was 
associated with an increase in proportion 
of successful treatments from 75% to 80% 
in intervention practices while there was no 
difference in the matched controls. 

3.12   Hip Repair Surgery, Dental 
Care
Two studies examined effects of assistive AI 
on decision-making and user experience in 
hip repair surgery and dental care. Li et al. 
[69] evaluated an AI to assist anaesthesiol-
ogists in assessing the risk of complications 
in patients after a hip surgery. The system 
was demonstrated to outperform the Amer-
ican Society of Anesthesiologist-Physical 
Status (ASA-PS) score, the traditional risk 
stratification method. The online app was 
user-friendly and received high satisfaction 
scores from anaesthesiologists. Focussing 
on trainees, Glick et al. [70] evaluated the 
performance, efficiency, and confidence 
level of 41 dental students on radiographic 
identif ication of furcation involvement 
(bone loss at branching point of the root 
of teeth), with and without AI assistance. 
While the AI did not improve decision-mak-
ing speed or conf idence, both groups 
acknowledged the role of AI in improving 
clinical decisions. Students also tended to 
over rely on AI advice.

3.13   Iron-deficient Anaemia, 
Chronic Inflammatory Bowel 
Disease, COVID-19, Wound Care, 
Gastrointestinal Obstruction, 
Chronic Kidney Disease
Six studies examined effects of AI on 
decision-making in iron-deficient anae-
mia, chronic inflammatory bowel disease, 
COVID-19, wound care, gastrointestinal 
obstruction and chronic kidney disease. 
Kurstjens et al. [71] demonstrated the 
utility of an algorithm that automatically 
assessed the risk of low body iron storage 
based on age, sex, a routine blood count and 
C-reactive protein concentration. Imple-
mentation in a hospital laboratory system 



122

IMIA Yearbook of Medical Informatics 2023

Magrabi et al

over a 1-month period resulted in one new 
iron deficiency diagnosis on average per 
day. Also using routinely collected data, 
Alrajhi et al. [72] demonstrated perfor-
mance of a home-grown AI to predict the 
severity of COVID-19 infection for patients 
at hospital admission (recall: 78-90%; 
precision: 75-98%). 

In imaging, Dong et al. [73] demon-
strated utility of segmentation algorithm 
for CT images to evaluate the postoperative 
enteral nutrition and analyse the clinical 
treatment effect of high intestinal obstruc-
tion in neonates. The segmentation time of 
the algorithm was shorter than that of the 
traditional method (24 s vs. 75 s), and accu-
racy was higher (84% vs. 70%). Howell et 
al. [74] evaluated AI for wound assessment 
against manual assessments performed 
by wound care clinicians. While AI anno-
tation algorithms performed similarly to 
human specialists, the degree of agreement 
regarding wound features among experts 
varied substantially, presenting challenges 
for defining a standard. Maeda et al. [75] 
undertook a prospective cohort study to show 
real-time use of AI during colonoscopy en-
abled prediction of the risk of clinical relapse 
in patients with ulcerative colitis in clinical 
remission. Chen et al. [76] demonstrated 
that an AI algorithm could improve image 
quality and reduce noise in CT images to 
assess nutritional management in chronic 
kidney disease.

3.14   Pneumonia and Sleep 
Disorders
Two studies reported processes to design 
assistive AI for triage of pneumonia and 
diagnosis of sleep disorders. Mohammed 
et al. [17] demonstrated the feasibility 
of using progressive web applications to 
migrate an ML-based pneumonia mor-
tality prediction triage tool from an aca-
demic framework (paper and web-based 
prototype) to a mobile application for a 
resource-constrained context in Gambia. 
Hwang et al. [77] described their experience 
in using an iterative, user-centred design 
process with sleep technicians to develop 
clinically sound explanations for AI that 
automatically scores sleep studies.

4   Discussion 
AI technologies are being applied in many 
clinical areas to improve patient care. Most 
contemporary systems are assistive and 
aimed at doctors in acute care settings in 
high-income nations. Studies provide evi-
dence about AI systems being integrated and 
used with existing CISs including EHRs and 
supporting systems. Although most systems 
employ DL approaches, their algorithms are 
primarily trained on routinely collected data. 
Few utilised data about environmental and 
social factors, indicating limited support for 
the goals of One Health. 

We found that 65% of systems were as-
sistive, requiring users to confirm or approve 
AI provided information or decisions. This 
is consistent with the patterns observed in 
our analysis of ML-based medical devices 
approved by the US Food and Drug Adminis-
tration where assistive devices made up 47% 
of the 49 reviewed [15]. Yet, little is known 
about the immediate and long-term effects 
of using such systems in clinical settings 
and is an area requiring further research [78, 
79]. Immediate effects on users include the 
workload placed on clinicians to review and 
confirm AI output including the potential for 
errors [80, 81]. We found only one in five 
studies of assistive systems examined the 
effects on clinician time, and the two studies 
that assessed safety involved autonomous sys-
tems [58, 82]. The long-term effects on users 
include the loss of situational awareness and 
skill degradation which are well-documented 
effects of automation in other domains [9]. 

There is also a need to improve evaluation 
and reporting [83, 84]. Study designs were 
largely quantitative and aimed at examining 
effects on decision-making by comparing 
system performance against a gold standard 
(e.g., [25, 56]); or by comparing clinician per-
formance with and without AI assistance (e.g., 
[20, 21, 32]). Few studies used randomised 
trial designs, opting instead for designs such 
as weaker historical case controls. Accuracy 
was most commonly measured, although a 
few studies examined safety and clinician 
time (e.g., [44, 46, 53]). Effects on care-deliv-
ery were assessed using a variety of measures 
including time to treatment (e.g., [29, 39, 67, 
68]). Patient outcomes were assessed using 
measures like length of stay and mortality 

(e.g., [61, 62, 66]), but no studies examined 
adverse events due to AI errors. Though 
improvements in decision-making and care 
delivery are expected to improve patient 
outcomes, it cannot be assumed, making it 
essential to directly evaluate the effect of AI 
interventions on patient outcomes [1, 16].

While the current literature usefully pro-
vides evidence about beneficial effects on 
decision-making, care delivery and patient 
outcomes, little is known about the broader 
sociotechnical factors that affect the adoption 
and use of AI in routine settings. Few studies 
used mixed- or qualitative methods that can 
explain observed effects and examine the 
sociotechnical dimensions of AI [85]. There 
is also a need to improving report measures to 
identify and address ethical considerations for 
the use of AI in clinical settings [84]. 

Although a staged approach to implemen-
tation and evaluation was evident in many 
studies (e.g., [48, 66]), only three tracked 
actual use of systems by clinicians [28, 
29, 75]. Evaluation of user experience was 
mostly confined to assessing satisfaction via 
surveys. A notable exception is the study by 
Rabinovich et al. [28] where the Technology 
Acceptance Model was employed to evaluate 
actual use and satisfaction post-implementa-
tion. Some studies used clinical simulation 
which permits patient- and risk-free evalua-
tion and can inform real-world implementa-
tion [21,40,48,50]. For instance, Benrimoh et 
al. [48] and Tanguay-Sela et al. [50] reported 
high fidelity clinical simulations that in-
formed an 11-month study to examine use of 
an AI for mental health in primary care [49]. 
Clinical simulation is particularly valuable to 
measure effects on decision-making including 
automation bias and other potentially remedi-
able human factors issue posing safety risks 
[78], that are not feasible or ethical to study in 
clinical settings. Importantly, it enables safety 
and efficacy to be assessed ahead of expensive 
clinical deployment [86].

Other studies reported strategies to incor-
porate well-known considerations for the use 
of digital health technologies such as ensuring 
that AI advice was actionable (e.g., when 
algorithms were designed to operationalise 
national guidelines [48]), and integrated into 
clinical workflow and existing CISs including 
EHRs (e.g., [22, 29, 77]). In one study where 
the AI was not integrated into the EHRs, 
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general practitioners needed to enter patient 
characteristics into a web-based version 
of the AI [68]. A key challenge for system 
implementation is to build upon general 
considerations for digital health and identify 
specific measures required for the safe and 
effective use of ML algorithms. For instance, 
Schwartz et al. applied the human-computer 
trust conceptual framework to specifically 
examine trust around machine learned predic-
tions of in-hospital deterioration [63]; Calisto 
et al. used the human-AI design guidelines to 
inform implementation of a breast screening 
AI into clinical workflow [21]. Another ex-
ample is Jordan et al.’s study of the effects of 
cultural embeddedness on AI implementation 
in ED nursing triage [42]. 

Further work is also required to advance 
the goals of One Health via collaboration 
between the digital health and One Health 
communities [87]. Indeed, the One Health 
approach may help to move technology-driven 
AI beyond doctors in well-resourced acute 
care settings towards problem-driven systems 
addressing areas of specific clinical need and 
to improve equity in provision of health ser-
vices [88]. Examples of such AI were evident 
in the studies we reviewed. For example, use 
of progressive web applications to migrate 
a pneumonia mortality prediction tool from 
a study prototype to a mobile app for a re-
source-constrained context was implemented 
in Gambia [17]. Another example is the use 
of non-clinical data such as traffic volume 
and socioeconomic status for predicting the 
risk of asthma exacerbations [18]. Other 
problem-driven examples include dermatol-
ogy apps specifically developed for people 
of colour [27, 55], a radiology examination 
instruction system to support COVID-19 
triage in a predominantly Spanish-speaking 
Latino community [29], and AI systems for 
trainee clinicians [36, 70]. 

5   Conclusions
This survey confirms that AI systems are 
being implemented and evaluated in many 
clinical areas. Most systems are assistive, 
requiring users to confirm or approve AI 
provided information or decisions. Study 
designs are largely quantitative measuring 

effects on decision-making, and there 
remain many opportunities to understand 
patterns of routine use and evaluate effects 
on care delivery and patient outcomes using 
mixed-methods. There is also a need to study 
the immediate and long-term effects of au-
tomation on human performance. No doubt 
newer generative AI that have potential to 
improve user interaction and reduce the bur-
den associated with CISs need to be carefully 
evaluated as they come with their own risks 
that need to be managed. Support for One 
Health including better integration of data 
about environmental and social factors in 
CISs is another area for further exploration. 
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