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Summary
Objectives: Machine learning (ML) is a powerful asset to support 
physicians in decision-making procedures, providing timely 
answers. However, ML for health systems can suffer from security 
attacks and privacy violations. This paper investigates studies of 
security and privacy in ML for health. 
Methods: We examine attacks, defenses, and privacy-preserving 
strategies, discussing their challenges. We conducted the fol-
lowing research protocol: starting a manual search, defining the 
search string, removing duplicated papers, filtering papers by title 
and abstract, then their full texts, and analyzing their contribu-
tions, including strategies and challenges. Finally, we collected 
and discussed 40 papers on attacks, defense, and privacy. 
Results: Our findings identified the most employed strategies 
for each domain. We found trends in attacks, including universal 
adversarial perturbation (UAPs), generative adversarial network 
(GAN)-based attacks, and DeepFakes to generate malicious 
examples. Trends in defense are adversarial training, GAN-
based strategies, and out-of-distribution (OOD) to identify and 
mitigate adversarial examples (AE). We found privacy-preserving 
strategies such as federated learning (FL), differential privacy, 
and combinations of strategies to enhance the FL. Challenges 
in privacy comprehend the development of attacks that bypass 
fine-tuning, defenses to calibrate models to improve their robust-
ness, and privacy methods to enhance the FL strategy. 
Conclusions: In conclusion, it is critical to explore security and 
privacy in ML for health, because it has grown risks and open 
vulnerabilities. Our study presents strategies and challenges to 
guide research to investigate issues about security and privacy in 
ML applied to health systems.
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1   Introduction
In recent years, data produced by medical 
systems has grown exponentially. The 
processing and knowledge extraction from 
these data contributed to the development 
of the so-called big data [1]. Medical sys-
tems produce complex data from sensors, 
imaging, or genomics data, among others. 
Medical complex data are essential for de-
cision-making and generating new knowl-
edge. Large amounts of medical images 
are collected to support physicians in the 
diagnosis process and to help identify dis-
ease patterns. Decision-making strategies 
are based on classical machine learning 
(ML) or deep learning (DL). Physicians 
can integrate ML techniques to analyze 
and assist decision-making, considering the 
recommendations of the models to enhance 
the diagnosis precision [1, 2].

Although ML can improve physicians’ 
decision-making, ML methods applied to 
health systems can also suffer attacks [2, 
3, 4]. Attacks on ML methods correspond 
to a study field called adversarial attacks 
(AA), which builds methods to train and 
test models in adversarial environments 
[3, 4]. ML methods are susceptible to at-
tacks, such as poisoning the training data 
(data poisoning), bypassing the test data 
(evasion attack), invalidating the model, 
and exploiting backdoors [2]. For instance, 
Figure 1 illustrates an example of AA on 
optical coherence tomography (OCT) im-
ages using the projected gradient descent 
(PGD) [5] attack.

Unfortunately, DL models for health sys-
tems are vulnerable to AA and suffer from 
privacy risks. According to [4], systems that 
handle sensitive health data need to be de-

signed to consider privacy risks. Concern-
ing privacy, many governments have defined 
regulations to formalize organizations’ data 
handling since growing data leakage result-
ed in decreasing systems confidence. The 
European Union proposed the general data 
protection regulation (GDPR) to establish 
rules and rights to manage sensitive data. 
Furthermore, in 1996 the United States 
proposed a regulation to handle medical 
data called the health insurance portability 
and accountability act (HIPAA). We explain 
all acronyms in Table 1.

This paper investigates security and 
privacy in ML for health, considering three 
perspectives: the most common attacks, 
suitable defenses, and privacy-preserving 
strategies. Finally, we highlight in this 
survey the following main contributions: 
(i) current taxonomies for security and 
privacy in ML for health systems; (ii) trends 
in attacks, defenses, and privacy-preserving 
strategies during the last years (2018-2022); 
(iii) challenges from developing attacks, 
defenses to detect and mitigate attacks, as 
well as to employ privacy methods in ML; 
(iv) tools and databases most applied to 
run experiments in security and privacy in 
ML for health; and (v) a summary of most 
relevant studies that cover strategies for 
attacks, defense, and privacy. 

2   Background
This section addresses essential concepts 
about security and privacy in ML. They 
motivate studying security and privacy in the 
health environment when handling sensitive 
information.
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2.1   Security in Machine Learning
ML methods are susceptible to adversarial 
attacks (AA). AA can exploit vulnerabilities 
in ML models and data [2, 4]. Adversarial ex-
ample (AE) is formally defined in Equation 
1, which minimizes the distance between AE 
and the original example using the Euclidean 
distance. Equation 1 represents an AE as , 
the original example as , the noise level as , 
the class label as , and the loss function  of 
the ML algorithm . An AE aims to induce a 
visual perception like the original example, 
fooling the ML model during the test or 
training phases. The AA seeks to maximize 

the loss of the ML algorithm, mainly used 
for DL methods [1, 3]. According to [3, 4], 
the security in ML for health can involve 
attacks and defense methods.

Min || xadv  −  x
0
 || + ε  ×  Lf (xadv , y)     (1)

AA for health cover features such as 
capabilities, system violations, knowledge, 
perturbation metrics, and classification or 
segmentation tasks [3, 4]. The objective of the 
attack can be poisoning or evasion. Poisoning 
attacks affect the training set, and evasion 
attacks affect the test set. System violations 
define which features of the system the attack-

er attempts to bypass. System violations target 
integrity, availability, and privacy. Attacker 
knowledge defines the permission level. The 
permissions are: (i) limited (black-box), 
which only explores the interface to access 
the model and test it; partial (gray-box), which 
explores a specific part of the system, such as 
the parameters; open (white-box) that targets 
several structures of the models, such as the 
hyperparameters and database. The pertur-
bation metrics are used to craft examples and 
generate AE. Usually, these metrics are based 
on  distances such as , , and . Examples of AA 
are: the fast gradient sign method (FGSM) 
[6], projected gradient descent (PGD) [5], 
One Pixel [7], jacobian saliency map attack 
(JSMA) [8], DeepFool [9], carlini & wagner 
(C&W) [10], and universal adversarial per-
turbations (UAPs) [11]. Besides, attacks can 
be against pre-processing algorithms, such as 
Image Scaling [12, 13]. Finally, the defenses 
to mitigate attacks are adversarial training [5], 
feature squeezing [14], defensive distillation 
[15], and generative adversarial network 
(GAN)-based (e.g., Magnet) [16].

2.2   Privacy in Machine Learning
Organizations have been concerned about 
privacy due to the growing data leakage and 
establishing of privacy regulations, such as 
GDPR [17-19]. Privacy violations are in-
creasing and require mitigation. ML models 
can suffer data leakage, resulting in privacy 
disasters for organizations. According to 

Fig. 1   Example of adversarial attack using projected gradient descent (PGD) on optical coherence tomography (OCT) image.

Table 1   Explanations of acronyms.

Explanation

Adversarial Attack
Adversarial Example
Carlini & Wagner
Computed Tomography
Deep Learning
Differential Privacy
Electrocardiograms
Electronic Health Records
Fast Gradient Sign Method
Federated Learning
General Data Protection Regulation 

Acronym

AA
AE
C&W
CT
DL
DP
ECG
EHR
FGSM
FL
GDPR

Explanation

Generative Adversarial Network
Homomorphic Encryption
Jacobian Saliency Map Attack
Machine Learning
Magnetic Resonance Imaging
MultiParty Computation
 Optical Coherence Tomography
Out-Of-Distribution
Picture Archiving and Communication Systems
 Projected Gradient Descent
Universal Adversarial Perturbation

Acronym

GAN
HE
JSMA
ML
MRI
MPC
OCT
OOD
PACS
PGD
UAP
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[18,19], challenges to privacy in ML include 
developing robust defenses to mitigate attacks, 
such as membership inference or re-identifi-
cation. Threat models, attacks, defenses, and 
features categorize privacy in ML. Threat 
models can be Linkage [20], Inference [21], 
and Re-identification [22]. Attacks are Fea-
ture Estimation [23], Membership Inference 
[24], Model Memorization [25], Extraction 
[26], and DeepFakes [27]. Attack features are 
knowledge of the attacker and attack objective. 
The attacker’s knowledge are black-box, 
gray-box, and white-box. Moreover, the attack 
objective targets models or training data [19].

Privacy-preserving strategies are obfus-
cation, cryptography, and aggregation [19]. 
Obfuscation methods hide sensitive variables 
using perturbations that seek to mitigate pri-
vacy risks, such as differential privacy (DP) 
[28] and GAN-based ones. Cryptographic 
methods use algorithms to hide user iden-
tities, using homomorphic encryption (HE) 
[29] and multiparty computation (MPC) 
[30]. These methods encrypt sensitive in-
formation, enabling complex operations on 
the encrypted data [19]. The aggregation 
methods work on collaborative training, 
including federated learning (FL) [31]. FL 
creates clean models and sends them to the 
organizations that handle sensitive data. 
These organizations train models on sensi-
tive data without making it public and send 
the trained model to a server that aggregates 
the models on a general model [17-19].

3   Materials and Methods
We applied a methodology of software 
engineering proposed by [32] to conduct 
this research on security and privacy in ML 
for health. We investigate papers from 2018 
to 2022. This section describes the method 
applied to search and select the relevant 
papers. We carried out the methodology 
encompassing the six steps, as follows: (i) 
define the research questions; (ii) select the 
databases; (iii) select the proper keywords; 
(iv) define the search string; (v) define inclu-
sion and exclusion criteria; (vi) perform data 
extraction. The main purpose of this research 
is to identify strategies and issues of security 
and privacy in ML for health.

We define our research question to 
guide this work. First, we did an initial 
search to raise relevant papers and authors 
from the literature based on papers [2] and 
[4]. Afterward, we did a manual search to 
analyze papers that cited [2] and [4]. Also, 
we selected papers by analyzing abstracts 
and titles to collect important topics of se-
curity and privacy in ML for health. Thus, 
we collected candidate papers and analyzed 
their discussions, including or excluding 
papers if following the main topic (security 
and privacy in ML). Finally, referring to 
the papers collected, we defined research 
questions that guided the selection of the 
set of studies: (i) what state-of-art attack the 
study applied? (ii) has it employed defense 
to mitigate the attack? (iii) which features of 
defense contribute to mitigate the attacks? 
(iv) has it applied privacy-preserving ML 
techniques? (v) what metrics were applied 
to quantify attacks and defenses in machine 
learning for health?

The databases selected were the most 
used ones in computer science for health 
research, following the study of [33], such 
as ACM Digital Library, IEEE Explore, 
PubMed, Web@Science, and Science-
Direct. The percentage of papers found 
in each database are: EI Compendex 
(25.64%), ACM Digital Library (24.44%), 
IEEE Explore (1.13%), PubMed (3.98%), 
Web@Science (2.03%), and ScienceDirect 
(42.78%). Based on the research questions 
and topics, we selected the keywords most 
commonly used in the candidate papers 
initially collected. We used the Mendeley 
platform1 to identify common keywords. 
The keywords selected were adversarial 
machine learning, privacy, security, deep 
learning, medical systems, medical image, 
and healthcare systems.

The search string was drawn to cover 
variants of topics related to deep learning, 
machine learning, adversarial attacks, pri-
vacy, and medical systems. We identified 
relevant topics dependent on the manual 
search and fine-tuned terms based on papers 
[2] and [4], as well as the most cited authors. 
Our search string was defined in the review 
process based on the initial search conducted 
by the following steps:

1 https://www.mendeley.com/search/

1. Manual search based on papers cited and 
keywords extracted from [2].

2. We select the most used databases for 
Computer Science, such as ACM digital 
library, IEEE Explore, IE Compedex, 
Web@Science, PubMed, and Science 
Direct. These databases are collected 
according to [32] and validated on papers 
[2-4, 18, 19] that are reviews related to 
security or privacy in ML.

3. We extracted keywords from papers [2-4, 
18, 19] and fine-tuned keywords using 
the Mendeley platform that stored papers 
from manual searches. The keywords are 
adversarial machine learning, privacy, 
security, deep learning, medical, medical 
image, and healthcare.

4. Having to define keywords, we composed 
the search string, placed in the box as 
follows:

Therefore, after searching papers in the da-
tabase, we refined the relevant papers, and 
we applied a selection criteria to include 
or exclude primary studies. The inclusion 
criteria are: 
• The study addresses any topic about ad-

versarial attacks or defenses of machine 
learning in the medical field;

• The study addresses any topic about 
privacy concerns in machine learning 
applied to the medical field;

• The study includes strategies of attack 
or defense in machine learning applied 
to the medical field;

• The paper is applied to complex data, 
such as medical images;

• The study is a research paper;
• The study is available;
• The study was written in English.

Also, we defined the following exclusion 
criteria:
• The study is not related to machine learn-

ing security or privacy in the medical field;
• The study does not discuss strategies or 

problems of adversarial attacks, defenses, 
or privacy applied to the medical field;

(„deep learning“ OR „machine learning“ OR 
„artificial intelligence“) AND („medical“ 
OR „healthcare“) AND („medical image“ 
OR „medical imaging“) AND („adversarial 
attacks“ OR „adversarial perturbations“ OR 
defenses or privacy)
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• The paper is not aimed to complex data;
• The study is gray literature, i.e., tutorials, 

electronic books, pre-print, tutorials, or 
technical reports;

• The paper is not available;
• The study is not written in English.

Finally, we collected the papers based on the 
search string and stored them in the Mende-
ley platform. These papers are fine-tuned by 
removing duplicates, considering their title 
and abstract, and analyzing the full papers. 
The data extraction comprehends relevant 
information from studies, such as title, au-
thors, interest topics, strategies applied, and 
challenges. To complete the data extraction, 
we defined two taxonomies for security 
and privacy in ML for health, respectively. 
Figure 3 describes the security taxonomy 
inspired in [3]. We built the taxonomy of 
security following this specification: (i) we 
select the main topic of adversarial attack 
in health systems; (ii) we specify and group 
aspects analyzed in the literature, such as 
features, category, defenses, and health 
task; (iii) we classify strategies following 
[2] that defines which features are systems’ 
violations, the goal, and knowledge, as well 
as the categories following attacks method 
based on gradient, optimization, and pre-
processing; (iv) finally, we select strategies 
and papers collected from the literature that 

address this strategy. Figure 4 shows the 
taxonomy of privacy inspired in [19] that 
collects the following aspects from literature: 
(i) the main topic; (ii) the group of aspects 
analyzed, such as threat model, attacks, 
defenses, and features; (iii) we classify 
strategies following features and defenses, 
for instance, according to [19] defenses are 
obfuscation, cryptography, and aggregation; 
(iv) the strategies selected correspond to pa-
pers collected from the literature that address 
these strategies for health task. 

4   Result
This section presents our findings about 
security and privacy in ML for health, based 
on the selected literature works from 2018 
to 2022. Figure 2 shows a pipeline to collect 
the papers. We followed three stages: (i) 
search strategy, (ii) selection and exclusion 
criteria, and (iii) data extraction.

Based on Figure 2, we describe the 
following stages. Stage 1, the search strat-
egy, defined the initial search following a 
manual search to collect primary studies, 
such as relevant surveys and reviews. Such 
reviews are [2] and [4] used to guide re-
search questions outlined in Section 3. Also, 
based on the manual search, we selected 

databases regarding computer science and 
medicine related to [2] and [4]. The main 
topics collected from the manual search as-
sisted in defining the keywords: adversarial 
machine learning, privacy, security, deep 
learning, medical systems, medical image, 
and healthcare systems. We built a search 
string based on keywords and constraining 
them for the period between 2018 to 2022, 
English language, and if it is a research pa-
per. Stage 1 returned 1,330 primary studies 
that will be fed to stage 2. Stage 2 filters 
studies following the selection and exclusion 
criteria (see Section 3). We removed 246 
duplicated papers, reducing from 1,330 to 
1,084 papers. Thereafter, we filtered papers 
by title and abstract, removing 880 from 
1,084 to 204 papers. Finally, we filtered from 
204 to 40 papers by analyzing the full text. 
Stage 3 does the data extraction, considering 
the main topics about adversarial attacks, 
defenses, and privacy results. In summary, 
we identify titles, authors, challenges, and 
strategies applied to the main topics posed. 

4.1   Overview
This section presents an overview of results 
that summarize the main strategies and the 
taxonomy proposed. Our findings compre-
hend 40 papers related to 3 domains: attacks 

Fig. 2   Pipeline of the literature review. This review collects relevant papers from the literature from 2018 to 2022, including security and privacy in machine learning for health. The research issues focus on adversarial 
attacks, defenses, and privacy concerns.



IMIA Yearbook of Medical Informatics 2023

273

Security and Privacy in Machine Learning for Health Systems: Strategies and Challenges

with 17 papers (42.50%), defenses with 14 
papers (35.00%), and privacy with 9 papers 
(22.50%). The main topics of the papers 
are strategies to attack DL classifiers tested 
on medical images, techniques to identify 
or mitigate attacks, and strategies to priva-
cy-preserving medical images with sensitive 
attributes. In the literature, most attacks 
applied in DL for healthcare are FGSM 
(23.53%) [4], PGD (11.76%) [5], GAN-
based (17.65%) [34], and UAPs (11.76%) 
[11]. Furthermore, we found that the most 
employed defenses are frequency domain 
(13.33% of the papers), GANs (26.67% of 
the papers), and adversarial training (20.00% 
of the papers) to mitigate or identify AE. 

We proposed two taxonomies to summa-
rize the main strategies found and to classify 
the papers collected. We were inspired by 
[3] and [19] to build our taxonomies and 
extend them to DL for healthcare. Figure 

3 presents a taxonomy of security in ML 
for health, regarding the attack category, 
attacker knowledge, defense features, and 
defense category. Attacks are classified into 
categories: Gradient-based, Optimization, and 
pre-processing. Other significant aspects of 
attacks are the features that classify a system 
violation, the objective, and the knowledge. 
Defensive methods are organized as pre-pro-
cessing, identification with out-of-distribution 
(OOD) and GANs, mitigation with frequency 
domain and adversarial training, as well as the 
Surrogate model with GANs. Our taxonomy 
classifies the papers as targeting the attack 
strategy or defense strategy. 

Our results show that the most em-
ployed strategies for privacy-preserving 
in ML are: FL [31] with 44.44% of the 
papers, DP [28] with 22.22% of the papers, 
HE [29] with 11.11% of the papers, and 
MPC [30] with 11.11% of the papers (see 

Section 2). Moreover, DL models could 
be attacked for feature estimation [23], 
membership [24], model memorization 
[25], and extraction [26]. The privacy 
attacks are modeled by the threat model 
following linkage [20], inference [21], and 
re-identification [22]. These results are 
summarized in our taxonomy of privacy in 
ML for health that define relevant topics 
and papers addressing privacy-preserving 
strategies. Figure 4 illustrates our tax-
onomy, drawing papers that applied the 
strategy presented in green squares. The 
threat models are state-of-art papers, such 
as [20-22]. In addition, attacks are outlined 
in papers [23-27]. For health, the defensive 
methods most employed are DP [28, 68, 
70], GAN-based [65, 71], MPC [67], HE 
[72], and FL [66, 67, 69, 72]. Also, we list 
privacy features in ML, such as permission 
level and attack objective.

Fig. 3   Taxonomy of security in machine learning for health. The figure shows the definition of adversarial attacks (bottom part) and defensive methods (upper part).
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In terms of medical datasets, papers in the 
literature are usually collected from public 
(e.g., Kaggle2) or private datasets, selecting 
different categories of medical images, such 
as X-ray, Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI), Dermos-
copy, Fundoscopy, and OCT. Most images 
analyzed correspond to brain, chest, skin, 
and eye, as well as COVID-19 images. Figure 
5(a) shows the most employed medical data-
sets, including X-ray, CT, MRI, Dermoscopy, 
Fundoscopy, and EHRs. These datasets are 
exploited to generate attacks or to build 
defenses and privacy-preserving strategies. 
X-ray images are widely addressed to out-
line attack and defense strategies. Note that 
the papers collected from the literature are 
detailed in Tables 2, 3, and 4.

The papers collected from the literature 
described target databases, attack methods 
(see Table 2), defense methods (see Table 3), 
and privacy-preserving strategies (see Table 

2 https://www.kaggle.com/

4). The next section describes the highlighted 
strategies applied to the attack, defense, and 
privacy-preserving ML models in health.

4.2   Highlighted Strategies of 
Security in Machine Learning for 
Health
Security strategies in ML for health applica-
tions must be aware of attacks and defenses 
for ML models. We summarized the litera-
ture collected from attacks in Table 2 and 
defenses in Table 3.

Papers have applied attacks such as 
FGSM, PGD, One Pixel, and UAPs. Fur-
thermore, the authors propose strategies to 
attack the segmentation or classification task. 
Such papers [38, 46, 48] investigated attacks 
to fool the segmentation task using UNet3 to 
generate perturbed masks. In the classification 

3 https://pytorch.org/hub/mateuszbuda_
brain-segmentation-pytorch_unet/

task, papers [35] and [41-44] employed the 
FGSM attack, [35, 41, 44] the PGD attack, 
[39, 40] the UAP attack, [37] the One Pixel 
attack, and [46, 48, 60] GANs-based attack. 
As far as DeepFake attacks are concerned, 
which generate fake data, e.g., inserting a 
malign tumor into a medical image that is 
supposed to be benign. These papers collect 
medical databases, including diverse catego-
ries. Figure 5(b) illustrates the categories of 
the most employed data by studies collected 
from the literature. The authors mostly applied 
Chest X-rays images due to the COVID-19 
pandemic. Also, they have employed images 
of Dermoscopy, Fundoscopy, and OCT, as 
well as EHRs. Finally, MRI and CT images 
are applied less frequently than X-rays. 

 Regarding defenses in adversarial envi-
ronments for health, papers explore strate-
gies based on pre-processing, identification, 
mitigation, and surrogate models. Trending 
strategies are identifying attacks with GANs 
[51, 52] and OOD [57]. In addition, [53, 55, 
59-64] develop strategies to mitigate AA us-

Fig. 4   Taxonomy of privacy in machine learning for health. The figure shows the definition of mitigation methods (center part), privacy attacks (left part), and features of attacks (right part).
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Table 2   Summary of paper about attacks in machine learning for health.

ID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Paper

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[34]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Objective

Investigating the advances of adversarial attacks in health. The authors applied the FGSM and PGD attacks to fool DL models and reduce their performance. The attack is 
tested on Chest X-ray images.

Create fake images with GAN to fool DL models. The authors inject an anomaly in clean X-ray images. They aim to need clarification on the model when it classifies.

Reduce performance of DL for classification dermoscopy images with Nevos Melanocíticos using the One-pixel attack.

Explore attacks on segmentation using the Multi-Scale attack to generate malicious masks on Dermatological lesion images.

The authors applied natural perturbation to reduce DL performance. Attacks with natural features can contribute to hidden perturbation on the clean image. The tests were 
performed on Fundoscopy, Chest X-Ray, and Dermoscopy images. 

Exploring Universal Adversarial Perturbation (UAPs) applied to Chest X-ray, Melanoma, and OCT images. This paper aims to demonstrate that UAPs can reduce the 
performance of CNNs

Investigating the effect of natural images of ImageNet with attacks. The proposal addresses adversarial attacks using UAPs against images from OCT, Melanoma, and X-ray. 

Explore the FGSM attacks on Chest X-ray images of COVID-19. The authors compare the attacked images in front of models trained on clean images to reduce their 
performance.

Generate Malicious 3D images that contain beginning or malign features when the X-Ray machine transfers the image to the database.

The authors studied the effects of batch normalization to produce vulnerable networks. The experiments are carried out using FGSM and PGD attacks on X-ray medical images. 

The authors proposed an attack on COVID-19 X-ray images. They intend to test white-box and black-box attacks, as well as compare the no-sign attack to FGSM and PGD. 

Proposed a black-box attack in Medical images of Magnetic Resonance (MRI), CT Scans, and X-rays using the Watermark technique. This technique embedded a watermark 
in the image by Krawtchouk moments to produce adversarial images that fool DL models.

This paper addressed a method to attack DL models for image segmentation. The authors create a technique based on differential evolution, which optimizes the space of 
attack aimed at better than gradient-based attack. The datasets attacked were Glaucoma, Lung, Melanoma, and ultrasound. 

The vulnerability of DL models during the segmentation of medical images is evaluated. The authors applied the Adaptive Segmentation Mask Attack (ASMA) attack that 
generates adversarial masks to segment dermoscopy and glaucoma images. 

Proposed an approach to attack segmentation models for medical images. The authors employ a Variational Autoencoder to generate adversarial examples of CT images.

Exploring vulnerabilities of CNNs NasNet-Large and Inception-ResNet-v2 on Chest X-ray images.

A GAN to generate fake X-ray images of mammogram breast cancer. The authors create a DeepFake strategy to insert cancerous tissues into the image.

ing adversarial training and applying GANs. 
GANs methods could generate synthetic AE 
to teach models the features of an AE during 
adversarial training. The work in [49] aims to 
identify anomalies in the frequency domain 
and mitigate AA in medical images. Besides, 
we found that the surrogate models can reduce 
attack effects, and GANs strategies tend to 
be most applied in this context, such as [54], 
[59-63]. Figure 5(c) summarizes the number 
of studies that proposed defensive strategies, 
corresponding attacks, and defenses. To eval-
uate defenses, we raised attacks FGSM, PGD, 
One Pixel, C&W, segmentation, and GANs. 
FGSM and segmentation attacks are most 
used to test the strengths of defenses, such 
as identification, GANs, surrogate model, 
frequency domain, and adversarial training. 
Furthermore, papers mostly build defenses 
based on surrogate models with GANs.

4.3   Highlighted Strategies of Privacy 
in Machine Learning for Health
We analyzed trends in privacy in ML for 
health (detailed in Table 4), collecting priva-
cy-preserving strategies, such as FL, DP, HE, 
and MPC, as well as other defenses against 
re-identification attacks. Note that [68, 70] 
and [64, 71] present obfuscation with DP and 
GANs, respectively. Other strategies are the 
cryptographic one with MPC in [67] and HE 
in [72]. Besides, the most employed strategy 
is the FL addressed by [66, 67, 69, 72] to 
protect privacy in datasets of X-rays images, 
Electronic Health Records (EHR), and Electro-
cardiograms (EGG). The works in [66, 67, 68, 
72] carry out strategies to protect DL models 
trained on X-ray images. Another important 
issue is tackled in [65], which investigates 
protections against re-identification in Pic-

ture Archiving and Communication Systems 
(PACS), and [70] that mitigates leakage in 
EHRs data. On the other hand, [27] generates 
DeepFake images in EGGs. 

We observed that privacy-preserving strate-
gies are evaluated over attacks against privacy. 
Figure 5(d) shows re-identification, inference, 
and DeepFakes attacks against FL, DP, HE, 
and MPC. FL is the most applied privacy-pre-
serving strategy, which privately trains minimal 
models to share sensitive data. Our findings 
corroborate that the inference attack is the most 
applied attempt to infer sensitive attributes from 
a dataset. Re-identification attacks are exploited 
in the health context as well. DP and HE play 
a role in mitigating re-identification attacks in 
datasets of images and EHR. In summary, the 
papers related to AA, defenses, and privacy 
concerns contribute to improving the discus-
sion of security and privacy in ML for health.
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Table 3   Summary of paper about defenses in machine learning for health.

ID

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Paper

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Objective

Identifying adversarial examples using GANs. The proposed method analyzes the frequency domain to recognize images affected by perturbations.

It proposed a compression method based on an image JPEG to filter the frequency domain and mitigate the effect of adversarial attacks.

The proposal seeks to improve model generalization by adding synthetic data with adversarial examples. These examples are essential to model and learn AE. The method 
proposed to enhance the detection of AE on CT Scan datasets.

The work identifies malicious labels on data using a GAN, improving the model’s robustness.

The paper reduces the adversarial attacks on the Gradient Descent method. They propose the Stochastic Coordinate Descent to minimize the loss when are adversarial medical 
examples.

The authors proposed a defense method by denoising operators to mitigate perturbations on medical images. This defensive method aims to mitigate FGSM and PGD attacks on 
Chest X-rays images.

This defensive method proposes to improve the robustness of DL models by evaluating Out-Of-Distribution (OOD). The authors proposed the Mahalanobis confidence score to 
detect OOD and mitigate the effects of AA on healthy and infected blood smear images. Also, the authors applied detection against FGSM, BIM, DeepFool, and C&W attacks.

The method proposed is based on the ensemble of CNNs to mitigate adversarial attacks, such as FGSM and One Pixel. The ensemble was tested in Lung nodules CT images. 

Proposed a defensive plan against FGSM, PGD, Basic Iterative Method (BIM), and Momentum Iterative Method (MIM) attacks on Chest X-rays images. The authors employ the 
Multivariate Gaussian Model to identify features that do examples malicious.

The authors proposed the MedRDF, a framework to defend medical diagnosis against adversarial attacks and enhance the robustness of the DL model. The framework has a 
voting system to select denoised images and evaluate ones for the Robust Metric. The author conducted experiments on COVID-19 images of X-rays.

The method proposed is based on adversarial training using images orthogonal momentous. The authors tested the technique for classification and segmentation in X-rays and 
histopathology images when performing the attacks PGD and FGSM.

Analyze DL models under attacks to compare the effects of their complexity on adversarial robustness. The authors show that in adversarial training, all model complexity carries 
out similar robustness. They execute tests on Chest X-ray, Dermoscopy, and OCT images.

This paper aims to analyze the adversarial robustness in MRI knee images when applied to CNNs to reconstruct images.

This paper proposed a robust method to improve DL models against the FGSM attack trained on MRI brain tumor images. The strategy proposed aims to apply adversarial 
training. Therefore, adding the Gaussian noise to correct the confidence of the classifier.

Table 4   Summary of paper about privacy in machine learning for health.

ID

32

33

34

35

36

37

38

39

40

Paper

[65]

[66]

[67]

[68]

[69]

[27]

[70]

[71]

[72]

Objective

Privacy-preserving in medical images. The authors proposed an approach to mitigate re-identification attacks, integrating Picture Archiving and Communication System (PACS).

A method for sharing private medical data between organizations using FL. Their proposal shares various minimal models that train on sensitive data. The central server 
aggregates minimal models into a general model, which results in a model trained on private data.

Develop a framework to improve the security of Federated Learning with a central aggregation server. The proposal combines Differential Privacy and Multiparty Computation to 
protect the aggregation server. Thus, they mitigate leakage at the server level when sharing chest X-ray COVID-19 images. 

The authors propose a PyTorch framework to private the chest X-ray images during the gradient calculus for segmentation and classification. The method applies Gaussian 
Differential Privacy to improve privacy-preserving in Stochastic Gradients.

Exploits the poisoning attacks and proposes the MediSecFed to protect the privacy of chest X-ray images. They are sharing medical images using FL for privacy-preserving.

Generate DeepFake electrocardiograms (EGGs) using a network called WaveGAN. The authors generate synthetic data aimed at hidden EEG real to enhance the privacy-preserving of users.

Propose a method based on DP to publish EHR diabetes medical data and make available private way sensitive data. Also, the authors tested the DP on a mini-bath of CNNs to 
train models and prevent attacks.

This paper proposed a GAN to generate high-quality synthetic data. Thus, the authors became the original data private and made it valuable for training other models. The 
experiments were performed on EHR to generate synthetic attributes.

This paper proposed a privacy-preserving strategy based on FL and HE to protect the aggregation server. The tests were carried out with chest X-ray COVID-19 images to train 
CNNs private way. 



IMIA Yearbook of Medical Informatics 2023

277

Security and Privacy in Machine Learning for Health Systems: Strategies and Challenges

4.4   Tools
Tools are established in the literature to 
produce attack, defense, and privacy-pre-
serving strategies. AA can be generated 
using Python libraries SecML4, Adver-
sarial Robustness Toolbox5 (ART), and 
TorchAttacks6. ART is practical because it 
implements tools to generate adversarial 
attacks and defenses, including attacks and 
defenses for privacy. SecML and Torch-
Attacks run AA, such as FGSM, PGD, 

4 https://secml.readthedocs.io/en/v0.15/
5 https://github.com/Trusted-AI/adversari-

al-robustness-toolbox
6 https://github.com/Harry24k/adversari-

al-attacks-pytorch

One Pixel, and others. SecML works on 
TensorFlow models and TorchAttacks on 
Pytorch models. Moreover, the most used 
tools to build privacy-preserving strategies 
are TensorFlow or PyTorch for FL, PyDP 
for DP from DeepMind, Microsoft SEAL 
for HE, and MPyC. Finally, ART can run 
defenses against AA, such as Adversarial 
Training and Defensive Distillation.

5   Discussion
This section examines trends and challenges 
related to attacks, defenses in adversarial en-
vironments, and privacy concerns for health.

5.1   Trends
We presented the tendencies and directions 
of AA regarding defenses and privacy con-
cerns in ML for health. Figure 6 presents a 
timeline of the primary studies that intro-
duced trends of AA, including defenses and 
privacy-preserving. Likewise, we define a 
timeline from 2018 to 2022 that includes 
the main trends. Directions in AA for health 
address PGD and FGSM attacks used to 
generate efficient AE and to distort DL 
models [35]. DL models ResNet50, VGG19, 
VGG16, and InceptionV3 are widely em-
ployed to classify medical images. Besides, 
attacks target to corrupt these models and 
reduce their performance. The trends for 

Fig. 5   literature review results related to most used medical datasets, attacks, defenses, and privacy-preserving strategies. 
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analyzing attacks started in 2018, exploring 
attacks vulnerabilities to corrupt NasNet 
and Inception trained on medical images. 
In 2019, the papers exploited the attacks 
FGSM, PGD, segmentation, and GAN-
based, as well as attacks to generate Deep-
Fakes on medical images. In 2020, papers 
employed attacks to build DeepFakes, and 
run the One Pixel attack. The attack trends in 
2021 were UAPs and DeepFakes generators. 
In addition, trends in 2022 address UAPs, 
FGSM, and other strategies, such as attacks 
based on watermarks. Finally, the directions 
to develop new attacks in medical images in 
the next years follow the DeepFakes gener-
ator and UAPs.

Defenses against AA for health systems 
need to improve the model’s robustness. 
Figure 6 illustrates the timeline regarding 
the trends of attacks, defenses, and priva-
cy-preserving strategies. Our review did 
not find defenses against AA for the health 
environment from 2018 to 2019. Trends 
for defenses in 2020 focused on mitigating 
attacks using GANs, adversarial training, 
and detecting corrupted models. GANs 

strategies improve the robustness of the 
discriminator model to identify AE and the 
generator to reconstruct examples without 
perturbations [51, 54]. In 2021, defenses 
focused on identifying attacks employing 
GANs and OOD strategies. Directions in 
2022 were towards of creating novel strate-
gies, such as Stochastic Coordinate Descent 
[55], perturbation denoising [56, 60, 61], 
and enhanced adversarial training [61, 65]. 
In health environments, we need to improve 
model defenses at the system level due to the 
sensitivity of the data handled. According to 
our extracted data, we should develop novel 
defenses based on GANs and propose new 
strategies for health systems.

Privacy-preserving trends have led to 
strategies to mitigate the leakage of sensi-
tive-health data in ML for health. In 2018, 
according to our review, papers mainly ad-
dressed methods to mitigate re-identification 
attacks in PACS and integrate ML methods 
into medical images. Tendencies in 2019 
were protecting mini-batches of DL models 
and EHRs by employing DP to obfuscate 
the original content. In 2021, papers com-

mitted FL to share medical images, DP to 
protect sensitive attributes, and GANs for 
generating synthetic attributes based on 
sensitive attributes. Directions in 2022 tend 
to generate synthetic and sensitive data to 
hide the original content and combine pri-
vacy strategies to enhance FL, such as HE. 
Moreover, literature on health privacy tends 
to combine FL, DP, or MPC [67]. When 
handling unstructured data, such as images, 
privacy protection methods are needed to 
improve their protection.

5.2   Challenges
The scenario of AA in health systems has 
challenges, such as building powerful de-
fenses to the AA, which focus on poisoning 
and evasion, bypassing fine-tuning methods, 
transferability of attacks, and attacks on 
real-world databases. Poisoning and evasion 
attacks aim to explore vulnerabilities in DL, 
applying UAPs, AutoAttack [73], and GANs. 
DL models tend to use fine-tuning strate-
gies. When an attack affects DL models, a 

Fig. 6   Timeline of papers collected from the literature between 2018 and 2022. Each paper covers the privacy, attack, or defense domain.
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challenge is to develop a method to bypass 
the fine-tuning strategy aimed at enhancing 
misclassification. Attack transferability is a 
relevant feature that can handle and indicate 
whether an attack is transferable to other 
domains. A challenge is treating transfer-
ability when building an attack to make it 
more generalizable. Developing attacks in 
real-world environments is arduous because 
the attack may have another behavior that 
needs fixing in the modeling phase.

Defensive methods are necessary and 
pose an arduous task in protecting ML for 
health. We collected the main challenges to 
creating defensive strategies using proac-
tive and reactive approaches for applying 
GANs, equilibrating privacy and defense, 
and calibrating models. Proactive defenses 
identify attacks before the attack happens, 
and reactive defenses work after the attack 
happens, aimed at mitigating the ill effects. 
Likewise, GANs are methods for building 
robust defenses because they can simulate 
attack scenarios and generate synthetic data 
to emulate malicious ones. Equilibrating 
privacy and defenses are challenging because 
defenses can show more information than 
they should. Based on privacy concerns, 
papers achieve a calibrated approach as an 
alternative to improve the model security, be-
cause it represents a more robust approach.

We observe that privacy-preserving strat-
egies are challenging to develop Federated 
Learning (FL) privacy, equilibrating privacy 
and accuracy scores, as well as setting the 
privacy budget, protecting privacy in medical 
images, and combining privacy methods. 
However, in FL, the aggregate server can 
suffer attacks, and its security should be 
improved. Besides, the privacy strategy can 
reduce the DL model’s performance. Privacy 
in unstructured data is challenging because 
the methods proposed, such as DP, work bet-
ter with tabular data. Then, we must explore 
the method of privacy-preserving that works 
in medical images. The combination of pri-
vacy techniques should be a robust strategy 
to improve other methods, such as combining 
Federated Learning (FL) with Differential 
Privacy (DP) or FL with MultiParty Compu-
tation (MPC). Another challenge to combine 
these techniques is to find a suitable method 
to improve the privacy budget while keeping 
the accuracy level.

Finally, we highlight that the develop-
ment of novel attacks, defenses, and privacy 
strategies have room for improvement. Each 
technique can contribute to another, such as 
exploring vulnerabilities to produce attacks 
leads to building novel defenses. Defensive 
methods can improve the robustness of 
DL models. Nevertheless, it can result in 
privacy issues. Thus, the defense method 
will be modeled based on gaps in defenses. 
In turn, privacy strategies are concerned 
with the performance of models because 
high-budget privacy levels can result in 
poor model accuracy.

6   Conclusion
We presented a survey on recent works 
from the literature and discussed health-re-
lated strategies and challenges regarding 
security and privacy in ML for health 
systems. We classif ied the papers into 
three domains: security, defenses against 
adversarial attacks (AA), and privacy con-
cerns. The AA strategies cover gradient and 
optimization attacks, as well as defenses 
inspired by GANs to make adaptive strat-
egies and generate synthetic Adversarial 
Examples (AE). 

Regarding privacy, the strategies fre-
quently applied are based on FL. However, 
each strategy comprehends issues, such as 
attacks that bypass fine-tuning, defenses 
that work reactively and proactively, and 
privacy based on methods for unstructured 
data. In summary, we highlight that security 
and privacy for health systems remain a 
strong trend for the next years. According 
to [17], developing ML models on sensitive 
data should always consider their risk and 
vulnerability. 
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