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Summary

Objectives: Through a scoping review, we examing in this survey
what ways health equity has been promoted in clinical research
informatics with patient implications and especially published in
the year of 2021 (and some in 2022).

Method: A scoping review was conducted quided by using
methods described in the Joanna Briggs Institute Manual. The
review process consisted of five stages: 1) development of aim
and research question, 2) literature search, 3) literature screening
and selection, 4) data extraction, and 5) accumulate and report
results.

Results: From the 478 identified papers in 2021 on the topic

of dinical research informatics with focus on health equity as

a patient implication, 8 papers met our inclusion writeria. All
included papers focused on arfficial infelligence (Al) technology.
The papers addressed health equity in clinical research informat-
ics either through the exposure of inequity in Al-based solutions
or using Al as a tool for promoting health equity in the delivery of
healthcare services. While algorithmic bias poses a risk to health
equity within Al-based solutions, Al has also uncovered inequity
in traditional treatment and demonstrated effective complements
and alfernatives that promotes health equity.

Conclusions: Clinical research informatics with implications for
patients still face challenges of ethical nature and dlinical value.
However, used prudently—for the right purpose in the right
context—clinical research informatics could bring powerful tools
in advancing health equity in patient care.
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1 Introduction

Clinical research informatics (CRI) is a
sub-discipline within biomedical and health
informatics that focuses on the analysis, inter-
pretation, and presentation of clinical knowl-
edge generated through informatics [1]. This
definition by Embi and Payne [1], dates back
over a decade ago and has previously been
mentioned in this journal by Solomonides
[2]. Acknowledging and including topics
that have flourished since Embi and Payne’s
definition [2], the most notable addition is
Artificial Intelligence (Al), referring in a
broad sense to the ability of technology to
resemble functions and processes of human
beings. Machine Learning (ML) [3], and
Natural Language Processing (NLP) [4, 5],
are notable subgroups of Al technologies
using relevant clinical data sets to advance
the representation and understanding of a
problem. Increased availability of clinical
data in digital form and expanding compu-
tational capacity enable more complex and
sophisticated processing of clinical data in
CRI[6]. This appears as prevalent use of Al
techniques in CRI, seeking to advance clin-
ical practice through decision-support and
prediction capabilities to support health
practitioners in different specialties [7-14].
However, extensive use of Al algorithms
has also revealed potential risks with im-
plications for patients and their prospects
of best possible treatment [15]. An example
is the “black box” challenge, which delin-
eates the necessity of making complex Al
operations transparent and comprehensible
to end-users [16]. Vast databases are being
queried by algorithms, as researchers and
clinicians are seeking patterns that can
guide decisions in clinical care and result in
opaque explanations for how the algorithms
reach their guidance [17]. The challenge
here may not be a result of secrecy or in-
adequate knowledge, but rather ML outputs

without regard for human comprehension
and careful consideration of clinical rel-
evance [18]. In other words, “black box”
approaches to decision-making in patient
care may incur significant risk, as neither
practitioner nor patient can fully compre-
hend the steps leading to recommendations
[3, 19]. In addition to well-known problems
being addressed in the development of Al
services in health [20], issues like access to
and ownership of clinical data, and possible
exacerbation of health inequity [21, 22] are
important ethical issues of concern. The
focus on these topics seems further accel-
erated by the unprecedented deployment of
digital solutions within healthcare during
the COVID-19 pandemic. Consequently,
several issues were illuminated, including
dependence on digital health, how to enable
digital solutions to provide better health-
care, as well as existing inequalities and
structural discrimination [23].

Health is associated with a non-medical
social gradient, where those on the lower
socioeconomic end often have the least
chance for good health. The circumstances
in which an individual is born, ages, lives,
and works, usually referred to as “social
determinants of health” (SDoH), can be
exacerbated by discrimination, prejudice,
and stereotyping [24]. Health equity, as
defined by the World Health Organization,
is ‘the absence of unfair, avoidable and
remediable differences in health status
among groups of people’, and requires
actions that even out differences in health
outcomes between populations with dif-
ferent socioeconomic foundations [24].
While holding great promise for the use
of Al in health care, CRI can pose risk of
reflecting and reproducing analytical and
algorithmic biases that potentially increase
health inequities that come with SDoH [21,
25]. Algorithmic bias that discriminates
based on characteristics integral to the



person, such as race and ethnicity, has
received particular attention in this context
[26-30]. Considering ‘race’ and ‘ethnicity’,
‘ethnicity’ comes with similar interpreta-
tion in the literature, but it is necessary
to address the conflicting use of the term
‘race’ in European and American contexts.
The US Census Bureau and the Office of
Management and Budget (OMB) refer to
race as a socially constructed way of sep-
arating humans into different sociocultural
and ancestral groups [31], while in Europe,
the term ‘race’ is avoided due to its associ-
ation with the wrong notion of biological
different races among human beings, pre-
ceding the linked historical and ideological
associations. Racism is, on the other hand,
an acknowledged term in Europe, referring
to discrimination based on the notion of
biological differences [32]. Recognizing
this distinction, this article uses the term
‘race’ when referring to the cited sources
that apply this in line with the definition of
the US Census Bureau and OMB.

A key concern in Real World Data
(RWD) based studies is representativeness.
Using such data sets for training algo-
rithms poses a risk for algorithmic biases
in Al [33], originating from, e.g., lack of
inclusion of underrepresented population
groups in samples [34, 35], and subjective
assessments [36, 37] within the data ma-
terial. An example of this problem is the
socially inconsistent and intermixing use
of the terms ‘ethnicity’ and ‘race’, possibly
affecting the creation and collection of data
[30]. Another key concern is to delineate
which circumstances one is to discern
between different populations as it may be
of relevance to some conditions and com-
pletely irrelevant to others [3§].

CRI hold much promise for improving
clinical practice [1], but needs to incor-
porate assessment of its impact on health
equity to provide healthcare to all patients,
regardless of SDoH [16, 21, 39]. Illustrat-
ing this concern is the establishment of
the High-Level Expert Group on Artificial
Intelligence (Al HLEG) by the European
Commission [15], to accommodate for
the implementation of the Commission’s
vision for ethical Al [40]. As an output,
seven requirements for Trustworthy Al
have been published from this group: 1)

Human agency and oversight, 2) Technical
robustness and safety, 3) Privacy and data
governance, 4) Transparency, 5) Diversity,
non-discrimination and fairness, 6) So-
cietal and environmental wellbeing, and
7) Accountability [15]. Taking this into
account, CRI should go beyond moni-
toring, controlling, and guarding against
unintentional outcomes that may exacerbate
structural health inequality, to actively
address and hence, improve health equity
[21, 35, 41]. Experience gained during
the COVID-19 pandemic has highlighted
the need for a more systematic approach
to ensure that digital health and CRI pro-
motes health equity and the goal towards
universal health coverage [23]. With this
aspiration and inspired by the topic of the
2022 IMIA Yearbook: “Inclusive Digital
Health: Addressing Equity, Literacy, and
Bias for Resilient Health Systems” [42], the
aim of this scoping review was to examine
in what ways research in CRI, published in
the year of 2021, has included health equity
to promote patient health and care.

2 Method

This scoping review applied methods as
outlined in the Joanna Briggs Institute (JBI)
Manual [43]. The process of the review pro-
ceeded as follows: 1) identify research ques-
tion, search terms and keywords, 2) search
for literature, 3) screening and selecting
relevant literature, 4) extract data from select-
ed literature and, 5) summarize and present
the results. A protocol defining the research
question, aim, screening process, search terms
and criteria for inclusion and exclusion was
developed in advance of the literature search.
The approach isillustrated in a PRISMA flow
diagram (see Figure 1) [44].

2.1 Search Strategy

A medical librarian guided our search in
September 2022, using the following data-
bases: Medline, Embase, ACM library and
Epistemonikos. In line with the JBI Manual
[43], a PCC framework was applied for the
literature search:
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Population - Clinical Research Informatics
Concept — Health Equity
Context — Patient Implications

The documentation of the search and the
overview of identified literature in the data-
bases are available upon request.

2.2 Screening and Selection of
Literature

Ahead of the screening process, we
screened the titles and abstracts of 25
randomly selected sources from the search
results to reach a general agreement on
Inclusion and Exclusion criteria before
the selection of sources (see Table 1). All
sources were then screened by the first
and second author using the predetermined
criteria for inclusion and exclusion. The
sources were screened in two subsequent
rounds supported by Covidence, a web-
based collaboration software platform
used for screening and data extraction in
literature reviews [45]. The first round of
screening extracted literature based on ti-
tles and abstract, while the second round of
screening extracted literature through full-
text reading. The first round of screening
resulted in conflicts on 86 sources (18 %
of the total sources screened), all of which
were resolved through a plenary review.
The second screening round resulted in
one conflict among the 58 sources that
underwent full-text review. The conflict
was resolved through a plenary review of
the source. Specific quality assessment
of the literature was not carried out as
this is generally not a priority in scoping
reviews [43].

2.3 Data Extraction

A spreadsheet with the data material was
created to extract information on the study
reference, population characteristics and
key findings that relate to the aim of the
scoping review. The first and second authors
read the full text sources with the purpose
to identify and extract aspects of clinical
research informatics, aspects of health
equity, and aspects of patient implications.
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Table T Inclusion and exclusion criteria for the screening of literature.

Inclusion Criteria

Exclusion criteria

Research literature published in 2021:
= Atficles
Full paper conference contributions

Research literature published in 2021:
= Editorials

= |efters

= Profocols

= (onference abstracts

Literature published in Danish, English, Norwegian and
Swedish

Literature that focuses on clinical research informatics and
health equity

Literature that provides research with patient implications

Literature that is not directly focused on how dlinical research
informatics can drive health equity

—\
=
K]
®
E-g Sources identified from databases Duplicate sources removed
t (n =644) (n =166
2
)
‘o
4
Sources screened > Sources excluded
(n=478) (n=420)
=)
e
c
3
o
@
Full-text sources screened _ Full-text sources excluded
(n=58) i (n = 50)
—
— v
®
T Sources included in review
] (n = 8)
5
Reasons for exclusion of full-text sources
No focus on clinical research informatics n=28
No focus on health equity n=7
No focus on implications for patients n=1
General data suitability and ethical considerations for Al research n=5
Letter n=8
Conference abstract n=1

Fig. 1 PRISMA Flow Diagram
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3 Results

Of the 58 sources that underwent full-text
review, eight studies were included in this
study. The reasons for exclusion are listed
in Figure 1. Although five sources focused
on health equity in CRI, they did not focus
on what ways CRI can drive health equity
and was therefore excluded under the reason
“General data suitability and ethical consid-
erations for Al research”. Among the eight
included studies, three were reviews and
therefore controlled for duplicates. Patra et
al. [46] and Pham et al. [47] are both citing
Hazlehurst et al. [48]. Patra et al. [46] also
share an article with Craig et al. [49], both
citing Navathe ef al. [50]. However, as the
included sources have different focus and
have contributed different findings, we did
not consider the reviews as overlapping. No
overlapping articles were identified between
Pham ef al. [47] and Craig et al. [49]. With
the exception of one Canadian study [47],
all studies were conducted in the United
States. The focus on CRI in these papers
was consistently on Al technology with two
themes identified on how CRI with patient
implications can drive health equity:
1) Exposing health inequity in CRI and ad-
dressing the need for adequate measures;
2) Promoting health equity through CRIL

The included publications are presented
in Table 2 with descriptions of how health
equity in CRI with patient implications is
addressed in each paper.

4 Discussion

Health equity, CRI and Al are topics in a
global setting. It is therefore interesting
that all the included papers in this review
are of North American origin. Except for
one Canadian study, all included studies
are conducted in the US It may be that this
simply reflects a greater focus on health
equity in CRI and Al in the US compared
to other countries, responding to a policy
that focuses on promoting equity and jus-
tice for all [57, 58]. Furthermore, low- and
middle income countries still appear to face
challenges considering the implementation
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of Al in health [59]. The US, compared to
other high-income countries, are ranking
well below in health care system perfor-
mance. Among the domains that pull the
performance down are less access and
equity, despite the significant amount of the
US gross domestic product that are spent
on health care [60].

Although it appears the COVID-19
pandemic has highlighted established dis-
parities in health and digital health [23],
interestingly only one study identified in the
survey as published in 2021 acknowledged
the COVID-19 pandemic as a catalyst [53].
However, the recognition of social inequi-
ties and its influence on health or digital
health in all included publications may
rather reflect the COVID-19 pandemic’s
role as a catalyst in illuminating and driving
the focus on health equity [23].

4.1 Exposing Health Inequity in CRI

In line with concerns articulated in pre-
viously cited literature [21, 25-30], three
of the included sources discussed risk
for health inequity in Al-based health
technology [47, 51, 55]. Coley et al. [51]
assessed differences in the performance
of two prediction models. They found that
these addressed subpopulations of ethnic or
racial minorities in an inadequate manner,
identifying a smaller proportion of antici-
pated suicides in patients who report race/
ethnicity to be Black and Alaskan Native/
American Indian, and in patients who do
not report race/ethnicity. The secondary
analysis conducted by Pham et al. [47] of
141 articles from a literature review, looked
into ethnoracial considerations in Al diabe-
tes tools, to propose a strategy for equity
for such technology. As the creators of an
NLP opioid misuse classifier, Thompson et
al. [55] evaluated the impact of bias against
historically and structurally disadvantaged
groups. All three CRI studies acknowledged
the challenges for health equity within Al
mainly expressed through algorithmic bias
[47, 51, 55]. This is echoing the fact that
RWD used to train algorithms risk repro-
ducing bias in technological solutions [33],
possibly through lower accuracy for under-
represented samples of underserved groups

[MIA Yearbook of Medical Informatics 2023

[34, 35], or through subjective assessments
[36], reinforcing possible judgemental
biases from healthcare providers [37].
Thompson et al. [55] acknowledge their
previous lack of consideration for disad-
vantaged populations in the creation of their
instrument, and thus mirror the concern of
Coley et al. [51] for insufficient attention
to the clinical usefulness or utility of Al
technology to disadvantaged subpopula-
tions. Besides, Pham et al. [47] identified
only 10 out of 141 papers on Al diabetes
tools that inconsistently addressed race or
ethnicity, or both (race/ethnicity), pointing
to a lack of reliable data and a lack of focus
for ensuring adequate training algorithms
for ethnic or racial minority populations.
Even if assessed for algorithmic bias, the
“black box” nature of Al will still chal-
lenge transparency, potentially including
unintended bias, or withhold information
underlying the performance of a model [17,
18, 55]. This is crucially important [21, 22],
as it emphasizes the responsibility of CRI
to acknowledge and act upon this in digital
health technology [46, 55], and incorporate
principles for ethical Al as outlined by the
ATHLEG [15].

4.2 Promofing Health Equity in CRI

The remaining five papers examined ways in
which CRI may enable and promote health
equity. Craig et al. [49] and Patra et al.
[46] did so in an indirect manner, through
literature reviews examining and promoting
the utility of Al to actively include and use
SDoH data from electronic records. How-
ever, it appears to be beyond the scope of
both reviews [46, 49], to discuss value in
subjective data, as well as potential bias
introduced by the source of data. As clin-
ical text include subjective data in EHR
[36], this illustrates the issue of possibly
overlooked subjective bias in algorithmic
performance [30, 36, 37]. Indeed, algorith-
mic bias appears in general as a difficult
barrier for health equity to overcome [26-
30, 33-37, 51, 55]. The current conditions
where CRI demonstrates promotion of
health equity appears admittedly to be those
where CRI is used specifically to address
inequity in health; not only in the evaluation

of Al-based healthcare instruments ability
to promote health equity [51, 55], but
through Al-based methods demonstrating
and addressing disparities in the delivery
of healthcare services [52-54].

Building from observations that under-
served populations experience a greater
amount of pain in osteoarthritis, Pierson et
al. [54] used a deep learning approach on
radiographs to predict the pain level of the
individual patient, finding that the approach
significantly reduced unexplained racial pain
disparities compared to traditional methods.
Through a ML-based method, Hammarlund
[52] demonstrated disparities between black
and white patients in acute myocardial in-
farction treatment, beyond that explained
by health risk differences. As a response
to how language discordances limited the
contact tracing of a non-English speaking
population in California, already dispropor-
tionately affected by COVID-19, Lu et al.
[53] used an ML-based approach to predict
the language of an incoming patient and
match this to the language of the contact
tracer. In contrast to the other included
sources in this scoping review, these sources
address health equity by directly responding
to existing health inequities. Pierson et al.
[54] and Hammarlund [52] both have in
common the use of Al in exposing health
inequity in clinical practices and provid-
ing alternative solutions, while Lu et al.
[53] uses Al to promote health equity in
a setting known to be characterized by
disparities in health and access to health.
All the included sources of this scoping
review address health equity in CRI with
patient implications, either by exposing
health inequality in Al-based solutions or by
examining possibilities for Al to extract data
of importance to address health equity [46,
47,49, 51, 55]. However, Pierson et al. [53],
Lu et al. [53], and Hammarlund [52] all
stand out in their application of Al to drive
health equity. The accomplishments of these
three studies appear to stem from how they
approach the issue of health equity. Instead
of illuminating health inequity present in
CRI-driven solutions, such as algorithmic
bias within Al-based prediction models [51,
55], they use Al to promote and improve
health equity in the deliverance of existing
treatments and health care services [52-54].



4.3 The Way Forward

To further assess the result of our findings,
we performed a similar search for the year
of 2022 to discern if more recent literature
would add to the significance for this study.
We identified at least 21 papers [61-81] that
met our inclusion criteria, including results
from the 2022 IMIA Yearbook [64, 68, 78].
Reading through these articles, we did not
identify additional thematic areas than those
we have included for the year of 2021. How-
ever, it appears to be a change in terms of
attention to the topic. The focus on health
equity in CRI seems to increase considering
the 21 studies we found published in 2022
compared to the 8 from 2021. Following
this again, three studies were also identified,
Just for the first month of 2023 [82-84]. The
interest for the topic are expanding from
North America based study reports to other
parts of the world, including Europe [63, 65,
67, 77] and Asia [84]. The scope of health
equity in CRI also appears to have expanded
and evolved. Primarily centred on challenges
considering race and/or ethnicity in 2021
[47,51-55], health equity in CRI has extend-
ed to diagnosis bias in rural populations [75],
age [64], and gender or sex-specific bias [63,
04, 67,70, 73, 77].

5 Conclusion

Several of the studies on Clinical Research
Informatics presented here highlight algo-
rithmic bias as a factor in the promotion
of health equity in digital solutions [47,
51, 55]. It appears to be a considerable
challenge for CRI to provide Al-based
solutions without algorithmic bias that
prove counterproductive to the intention
and goal of the solutions. Carefully select-
ing and appropriately balancing different
characteristics may reduce algorithmic bias
and adjust outcomes in some cases, but
bias can also remain hidden which make
correction nearly impossible [38]. Based
on the findings in this scoping review, our
impression is that the field of CRI, here
exemplified by Al as the focus of the recent
publications found, is more aware of the
challenges at hand, which is an important
starting point to find solutions that remedy

this challenge. This way CRI will increase
capability to promote and improve health
equity. This review illustrates that when the
right form of digital technology is correctly
adapted to the population in question at the
right time, Al-based CRI-solutions hold a
promise to drive equity in health. Recent
publications, in 2022 and beyond, illustrate
advancements and endeavour to improve
Al algorithms that leverage and combine
efforts to reduce and eliminate algorithmic
bias. Further progress and full incorpora-
tion into CRI require thorough assessment
and improvement for equitable and ethical
distribution of health care services that
respect patient autonomy and dignity.
Going forward, CRI holds opportunities
for novel patient- focused digital tools that
stimulate engagement and promote health
equity. This requires tools that do not ex-
acerbate structural inequalities, incorporate
ethical consideration to avoid harm, and mit-
igate risks related to sub-populations already
exposed to disparities in society and health.
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