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Summary
Objectives: Through a scoping review, we examine in this survey 
what ways health equity has been promoted in clinical research 
informatics with patient implications and especially published in 
the year of 2021 (and some in 2022). 
Method: A scoping review was conducted guided by using 
methods described in the Joanna Briggs Institute Manual. The 
review process consisted of five stages: 1) development of aim 
and research question, 2) literature search, 3) literature screening 
and selection, 4) data extraction, and 5) accumulate and report 
results.
Results: From the 478 identified papers in 2021 on the topic 
of clinical research informatics with focus on health equity as 
a patient implication, 8 papers met our inclusion criteria. All 
included papers focused on artificial intelligence (AI) technology. 
The papers addressed health equity in clinical research informat-
ics either through the exposure of inequity in AI-based solutions 
or using AI as a tool for promoting health equity in the delivery of 
healthcare services. While algorithmic bias poses a risk to health 
equity within AI-based solutions, AI has also uncovered inequity 
in traditional treatment and demonstrated effective complements 
and alternatives that promotes health equity.
Conclusions: Clinical research informatics with implications for 
patients still face challenges of ethical nature and clinical value. 
However, used prudently—for the right purpose in the right 
context—clinical research informatics could bring powerful tools 
in advancing health equity in patient care. 
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1   Introduction 
Clinical research informatics (CRI) is a 
sub-discipline within biomedical and health 
informatics that focuses on the analysis, inter-
pretation, and presentation of clinical knowl-
edge generated through informatics [1]. This 
definition by Embi and Payne [1], dates back 
over a decade ago and has previously been 
mentioned in this journal by Solomonides 
[2]. Acknowledging and including topics 
that have flourished since Embi and Payne’s 
definition [2], the most notable addition is 
Artificial Intelligence (AI), referring in a 
broad sense to the ability of technology to 
resemble functions and processes of human 
beings. Machine Learning (ML) [3], and 
Natural Language Processing (NLP) [4, 5], 
are notable subgroups of AI technologies 
using relevant clinical data sets to advance 
the representation and understanding of a 
problem. Increased availability of clinical 
data in digital form and expanding compu-
tational capacity enable more complex and 
sophisticated processing of clinical data in 
CRI [6]. This appears as prevalent use of AI 
techniques in CRI, seeking to advance clin-
ical practice through decision-support and 
prediction capabilities to support health 
practitioners in different specialties [7-14]. 
However, extensive use of AI algorithms 
has also revealed potential risks with im-
plications for patients and their prospects 
of best possible treatment [15]. An example 
is the “black box” challenge, which delin-
eates the necessity of making complex AI 
operations transparent and comprehensible 
to end-users [16]. Vast databases are being 
queried by algorithms, as researchers and 
clinicians are seeking patterns that can 
guide decisions in clinical care and result in 
opaque explanations for how the algorithms 
reach their guidance [17]. The challenge 
here may not be a result of secrecy or in-
adequate knowledge, but rather ML outputs 

without regard for human comprehension 
and careful consideration of clinical rel-
evance [18]. In other words, “black box” 
approaches to decision-making in patient 
care may incur significant risk, as neither 
practitioner nor patient can fully compre-
hend the steps leading to recommendations 
[3, 19]. In addition to well-known problems 
being addressed in the development of AI 
services in health [20], issues like access to 
and ownership of clinical data, and possible 
exacerbation of health inequity [21, 22] are 
important ethical issues of concern. The 
focus on these topics seems further accel-
erated by the unprecedented deployment of 
digital solutions within healthcare during 
the COVID-19 pandemic. Consequently, 
several issues were illuminated, including 
dependence on digital health, how to enable 
digital solutions to provide better health-
care, as well as existing inequalities and 
structural discrimination [23]. 

Health is associated with a non-medical 
social gradient, where those on the lower 
socioeconomic end often have the least 
chance for good health. The circumstances 
in which an individual is born, ages, lives, 
and works, usually referred to as “social 
determinants of health” (SDoH), can be 
exacerbated by discrimination, prejudice, 
and stereotyping [24]. Health equity, as 
defined by the World Health Organization, 
is ‘the absence of unfair, avoidable and 
remediable differences in health status 
among groups of people’, and requires 
actions that even out differences in health 
outcomes between populations with dif-
ferent socioeconomic foundations [24]. 
While holding great promise for the use 
of AI in health care, CRI can pose risk of 
reflecting and reproducing analytical and 
algorithmic biases that potentially increase 
health inequities that come with SDoH [21, 
25]. Algorithmic bias that discriminates 
based on characteristics integral to the 
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person, such as race and ethnicity, has 
received particular attention in this context 
[26-30]. Considering ‘race’ and ‘ethnicity’, 
‘ethnicity’ comes with similar interpreta-
tion in the literature, but it is necessary 
to address the conflicting use of the term 
‘race’ in European and American contexts. 
The US Census Bureau and the Office of 
Management and Budget (OMB) refer to 
race as a socially constructed way of sep-
arating humans into different sociocultural 
and ancestral groups [31], while in Europe, 
the term ‘race’ is avoided due to its associ-
ation with the wrong notion of biological 
different races among human beings, pre-
ceding the linked historical and ideological 
associations. Racism is, on the other hand, 
an acknowledged term in Europe, referring 
to discrimination based on the notion of 
biological differences [32]. Recognizing 
this distinction, this article uses the term 
‘race’ when referring to the cited sources 
that apply this in line with the definition of 
the US Census Bureau and OMB. 

A key concern in Real World Data 
(RWD) based studies is representativeness. 
Using such data sets for training algo-
rithms poses a risk for algorithmic biases 
in AI [33], originating from, e.g., lack of 
inclusion of underrepresented population 
groups in samples [34, 35], and subjective 
assessments [36, 37] within the data ma-
terial. An example of this problem is the 
socially inconsistent and intermixing use 
of the terms ‘ethnicity’ and ‘race’, possibly 
affecting the creation and collection of data 
[30]. Another key concern is to delineate 
which circumstances one is to discern 
between different populations as it may be 
of relevance to some conditions and com-
pletely irrelevant to others [38].

CRI hold much promise for improving 
clinical practice [1], but needs to incor-
porate assessment of its impact on health 
equity to provide healthcare to all patients, 
regardless of SDoH [16, 21, 39]. Illustrat-
ing this concern is the establishment of 
the High-Level Expert Group on Artificial 
Intelligence (AI HLEG) by the European 
Commission [15], to accommodate for 
the implementation of the Commission’s 
vision for ethical AI [40]. As an output, 
seven requirements for Trustworthy AI 
have been published from this group: 1) 

Human agency and oversight, 2) Technical 
robustness and safety, 3) Privacy and data 
governance, 4) Transparency, 5) Diversity, 
non-discrimination and fairness, 6) So-
cietal and environmental wellbeing, and 
7) Accountability [15]. Taking this into 
account, CRI should go beyond moni-
toring, controlling, and guarding against 
unintentional outcomes that may exacerbate 
structural health inequality, to actively 
address and hence, improve health equity 
[21, 35, 41]. Experience gained during 
the COVID-19 pandemic has highlighted 
the need for a more systematic approach 
to ensure that digital health and CRI pro-
motes health equity and the goal towards 
universal health coverage [23]. With this 
aspiration and inspired by the topic of the 
2022 IMIA Yearbook: “Inclusive Digital 
Health: Addressing Equity, Literacy, and 
Bias for Resilient Health Systems” [42], the 
aim of this scoping review was to examine 
in what ways research in CRI, published in 
the year of 2021, has included health equity 
to promote patient health and care. 

2   Method
This scoping review applied methods as 
outlined in the Joanna Briggs Institute (JBI) 
Manual [43]. The process of the review pro-
ceeded as follows: 1) identify research ques-
tion, search terms and keywords, 2) search 
for literature, 3) screening and selecting 
relevant literature, 4) extract data from select-
ed literature and, 5) summarize and present 
the results. A protocol defining the research 
question, aim, screening process, search terms 
and criteria for inclusion and exclusion was 
developed in advance of the literature search. 
The approach is illustrated in a PRISMA flow 
diagram (see Figure 1) [44]. 

2.1   Search Strategy 
A medical librarian guided our search in 
September 2022, using the following data-
bases: Medline, Embase, ACM library and 
Epistemonikos. In line with the JBI Manual 
[43], a PCC framework was applied for the 
literature search:

 Population – Clinical Research Informatics
 Concept – Health Equity
 Context – Patient Implications 

The documentation of the search and the 
overview of identified literature in the data-
bases are available upon request.

2.2   Screening and Selection of 
Literature 
Ahead of the screening process, we 
screened the titles and abstracts of 25 
randomly selected sources from the search 
results to reach a general agreement on 
Inclusion and Exclusion criteria before 
the selection of sources (see Table 1). All 
sources were then screened by the first 
and second author using the predetermined 
criteria for inclusion and exclusion. The 
sources were screened in two subsequent 
rounds supported by Covidence, a web-
based collaboration software platform 
used for screening and data extraction in 
literature reviews [45]. The first round of 
screening extracted literature based on ti-
tles and abstract, while the second round of 
screening extracted literature through full-
text reading. The first round of screening 
resulted in conflicts on 86 sources (18 % 
of the total sources screened), all of which 
were resolved through a plenary review. 
The second screening round resulted in 
one conflict among the 58 sources that 
underwent full-text review. The conflict 
was resolved through a plenary review of 
the source. Specific quality assessment 
of the literature was not carried out as 
this is generally not a priority in scoping 
reviews [43].

2.3   Data Extraction
A spreadsheet with the data material was 
created to extract information on the study 
reference, population characteristics and 
key findings that relate to the aim of the 
scoping review. The first and second authors 
read the full text sources with the purpose 
to identify and extract aspects of clinical 
research informatics, aspects of health 
equity, and aspects of patient implications. 
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3   Results
Of the 58 sources that underwent full-text 
review, eight studies were included in this 
study. The reasons for exclusion are listed 
in Figure 1. Although five sources focused 
on health equity in CRI, they did not focus 
on what ways CRI can drive health equity 
and was therefore excluded under the reason 
“General data suitability and ethical consid-
erations for AI research”. Among the eight 
included studies, three were reviews and 
therefore controlled for duplicates. Patra et 
al. [46] and Pham et al. [47] are both citing 
Hazlehurst et al. [48]. Patra et al. [46] also 
share an article with Craig et al. [49], both 
citing Navathe et al. [50]. However, as the 
included sources have different focus and 
have contributed different findings, we did 
not consider the reviews as overlapping. No 
overlapping articles were identified between 
Pham et al. [47] and Craig et al. [49]. With 
the exception of one Canadian study [47], 
all studies were conducted in the United 
States. The focus on CRI in these papers 
was consistently on AI technology with two 
themes identified on how CRI with patient 
implications can drive health equity:
1) Exposing health inequity in CRI and ad-

dressing the need for adequate measures;
2) Promoting health equity through CRI. 

The included publications are presented 
in Table 2 with descriptions of how health 
equity in CRI with patient implications is 
addressed in each paper. 

4   Discussion
Health equity, CRI and AI are topics in a 
global setting. It is therefore interesting 
that all the included papers in this review 
are of North American origin. Except for 
one Canadian study, all included studies 
are conducted in the US It may be that this 
simply reflects a greater focus on health 
equity in CRI and AI in the US compared 
to other countries, responding to a policy 
that focuses on promoting equity and jus-
tice for all [57, 58]. Furthermore, low- and 
middle income countries still appear to face 
challenges considering the implementation 

Table 1   Inclusion and exclusion criteria for the screening of literature.

Inclusion Criteria

Research literature published in 2021:
 Articles
Full paper conference contributions

Literature published in Danish, English, Norwegian and 
Swedish

Literature that focuses on clinical research informatics and 
health equity 

Literature that provides research with patient implications 

Exclusion criteria 

Research literature published in 2021:
 Editorials
 Letters
 Protocols
 Conference abstracts 

Literature that is not directly focused on how clinical research 
informatics can drive health equity 

Fig. 1   PRISMA Flow Diagram
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of AI in health [59]. The US, compared to 
other high-income countries, are ranking 
well below in health care system perfor-
mance. Among the domains that pull the 
performance down are less access and 
equity, despite the significant amount of the 
US gross domestic product that are spent 
on health care [60]. 

Although it appears the COVID-19 
pandemic has highlighted established dis-
parities in health and digital health [23], 
interestingly only one study identified in the 
survey as published in 2021 acknowledged 
the COVID-19 pandemic as a catalyst [53]. 
However, the recognition of social inequi-
ties and its influence on health or digital 
health in all included publications may 
rather reflect the COVID-19 pandemic’s 
role as a catalyst in illuminating and driving 
the focus on health equity [23]. 

4.1   Exposing Health Inequity in CRI
In line with concerns articulated in pre-
viously cited literature [21, 25-30], three 
of the included sources discussed risk 
for health inequity in AI-based health 
technology [47, 51, 55]. Coley et al. [51] 
assessed differences in the performance 
of two prediction models. They found that 
these addressed subpopulations of ethnic or 
racial minorities in an inadequate manner, 
identifying a smaller proportion of antici-
pated suicides in patients who report race/
ethnicity to be Black and Alaskan Native/
American Indian, and in patients who do 
not report race/ethnicity. The secondary 
analysis conducted by Pham et al. [47] of 
141 articles from a literature review, looked 
into ethnoracial considerations in AI diabe-
tes tools, to propose a strategy for equity 
for such technology. As the creators of an 
NLP opioid misuse classifier, Thompson et 
al. [55] evaluated the impact of bias against 
historically and structurally disadvantaged 
groups. All three CRI studies acknowledged 
the challenges for health equity within AI, 
mainly expressed through algorithmic bias 
[47, 51, 55]. This is echoing the fact that 
RWD used to train algorithms risk repro-
ducing bias in technological solutions [33], 
possibly through lower accuracy for under-
represented samples of underserved groups 

[34, 35], or through subjective assessments 
[36], reinforcing possible judgemental 
biases from healthcare providers [37]. 
Thompson et al. [55] acknowledge their 
previous lack of consideration for disad-
vantaged populations in the creation of their 
instrument, and thus mirror the concern of 
Coley et al. [51] for insufficient attention 
to the clinical usefulness or utility of AI 
technology to disadvantaged subpopula-
tions. Besides, Pham et al. [47] identified 
only 10 out of 141 papers on AI diabetes 
tools that inconsistently addressed race or 
ethnicity, or both (race/ethnicity), pointing 
to a lack of reliable data and a lack of focus 
for ensuring adequate training algorithms 
for ethnic or racial minority populations. 
Even if assessed for algorithmic bias, the 
“black box” nature of AI will still chal-
lenge transparency, potentially including 
unintended bias, or withhold information 
underlying the performance of a model [17, 
18, 55]. This is crucially important [21, 22], 
as it emphasizes the responsibility of CRI 
to acknowledge and act upon this in digital 
health technology [46, 55], and incorporate 
principles for ethical AI, as outlined by the 
AI HLEG [15].

4.2   Promoting Health Equity in CRI 
The remaining five papers examined ways in 
which CRI may enable and promote health 
equity. Craig et al. [49] and Patra et al. 
[46] did so in an indirect manner, through 
literature reviews examining and promoting 
the utility of AI to actively include and use 
SDoH data from electronic records. How-
ever, it appears to be beyond the scope of 
both reviews [46, 49], to discuss value in 
subjective data, as well as potential bias 
introduced by the source of data. As clin-
ical text include subjective data in EHR 
[36], this illustrates the issue of possibly 
overlooked subjective bias in algorithmic 
performance [30, 36, 37]. Indeed, algorith-
mic bias appears in general as a difficult 
barrier for health equity to overcome [26-
30, 33-37, 51, 55]. The current conditions 
where CRI demonstrates promotion of 
health equity appears admittedly to be those 
where CRI is used specifically to address 
inequity in health; not only in the evaluation 

of AI-based healthcare instruments ability 
to promote health equity [51, 55], but 
through AI-based methods demonstrating 
and addressing disparities in the delivery 
of healthcare services [52-54]. 

Building from observations that under-
served populations experience a greater 
amount of pain in osteoarthritis, Pierson et 
al. [54] used a deep learning approach on 
radiographs to predict the pain level of the 
individual patient, finding that the approach 
significantly reduced unexplained racial pain 
disparities compared to traditional methods. 
Through a ML-based method, Hammarlund 
[52] demonstrated disparities between black 
and white patients in acute myocardial in-
farction treatment, beyond that explained 
by health risk differences. As a response 
to how language discordances limited the 
contact tracing of a non-English speaking 
population in California, already dispropor-
tionately affected by COVID-19, Lu et al. 
[53] used an ML-based approach to predict 
the language of an incoming patient and 
match this to the language of the contact 
tracer. In contrast to the other included 
sources in this scoping review, these sources 
address health equity by directly responding 
to existing health inequities. Pierson et al. 
[54] and Hammarlund [52] both have in 
common the use of AI in exposing health 
inequity in clinical practices and provid-
ing alternative solutions, while Lu et al. 
[53] uses AI to promote health equity in 
a setting known to be characterized by 
disparities in health and access to health. 
All the included sources of this scoping 
review address health equity in CRI with 
patient implications, either by exposing 
health inequality in AI-based solutions or by 
examining possibilities for AI to extract data 
of importance to address health equity [46, 
47, 49, 51, 55]. However, Pierson et al. [53], 
Lu et al. [53], and Hammarlund [52] all 
stand out in their application of AI to drive 
health equity. The accomplishments of these 
three studies appear to stem from how they 
approach the issue of health equity. Instead 
of illuminating health inequity present in 
CRI-driven solutions, such as algorithmic 
bias within AI-based prediction models [51, 
55], they use AI to promote and improve 
health equity in the deliverance of existing 
treatments and health care services [52-54]. 
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4.3   The Way Forward 
To further assess the result of our findings, 
we performed a similar search for the year 
of 2022 to discern if more recent literature 
would add to the significance for this study. 
We identified at least 21 papers [61-81] that 
met our inclusion criteria, including results 
from the 2022 IMIA Yearbook [64, 68, 78]. 
Reading through these articles, we did not 
identify additional thematic areas than those 
we have included for the year of 2021. How-
ever, it appears to be a change in terms of 
attention to the topic. The focus on health 
equity in CRI seems to increase considering 
the 21 studies we found published in 2022 
compared to the 8 from 2021. Following 
this again, three studies were also identified, 
just for the first month of 2023 [82-84]. The 
interest for the topic are expanding from 
North America based study reports to other 
parts of the world, including Europe [63, 65, 
67, 77] and Asia [84]. The scope of health 
equity in CRI also appears to have expanded 
and evolved. Primarily centred on challenges 
considering race and/or ethnicity in 2021 
[47, 51-55], health equity in CRI has extend-
ed to diagnosis bias in rural populations [75], 
age [64], and gender or sex-specific bias [63, 
64, 67, 70, 73, 77]. 

5   Conclusion
Several of the studies on Clinical Research 
Informatics presented here highlight algo-
rithmic bias as a factor in the promotion 
of health equity in digital solutions [47, 
51, 55]. It appears to be a considerable 
challenge for CRI to provide AI-based 
solutions without algorithmic bias that 
prove counterproductive to the intention 
and goal of the solutions. Carefully select-
ing and appropriately balancing different 
characteristics may reduce algorithmic bias 
and adjust outcomes in some cases, but 
bias can also remain hidden which make 
correction nearly impossible [38]. Based 
on the findings in this scoping review, our 
impression is that the field of CRI, here 
exemplified by AI as the focus of the recent 
publications found, is more aware of the 
challenges at hand, which is an important 
starting point to find solutions that remedy 

this challenge. This way CRI will increase 
capability to promote and improve health 
equity. This review illustrates that when the 
right form of digital technology is correctly 
adapted to the population in question at the 
right time, AI-based CRI-solutions hold a 
promise to drive equity in health. Recent 
publications, in 2022 and beyond, illustrate 
advancements and endeavour to improve 
AI algorithms that leverage and combine 
efforts to reduce and eliminate algorithmic 
bias. Further progress and full incorpora-
tion into CRI require thorough assessment 
and improvement for equitable and ethical 
distribution of health care services that 
respect patient autonomy and dignity.

 Going forward, CRI holds opportunities 
for novel patient- focused digital tools that 
stimulate engagement and promote health 
equity. This requires tools that do not ex-
acerbate structural inequalities, incorporate 
ethical consideration to avoid harm, and mit-
igate risks related to sub-populations already 
exposed to disparities in society and health. 
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