Planta Med 2018; 84(08): 527-535
DOI: 10.1055/s-0043-123349
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Anti-inflammatory Effects of Canthin-6-one Alkaloids from Ailanthus altissima

Seung-Kye Cho
1   Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
,
Miran Jeong
1   Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
,
Dae Sik Jang
1   Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
2   Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
,
Jung-Hye Choi
1   Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
3   Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
› Author Affiliations
Further Information

Publication History

received 02 September 2017
revised 07 November 2017

accepted 15 November 2017

Publication Date:
27 November 2017 (online)

Abstract

Canthin-6-one (CO) alkaloids possess various biological activities, including antibacterial, antitumor, antifungal, and antiviral activities. However, their anti-inflammatory effects and underlying molecular mechanisms are poorly characterized. This study aimed to investigate the anti-inflammatory effects of CO and its derivative 5-(1-hydroxyethyl)-canthin-6-one (5-HCO), isolated from the stem barks of Ailanthus altissima in lipopolysaccharide (LPS)-stimulated macrophages. CO (1 and 5 µM) and 5-HCO (7.5 and 15 µM) significantly inhibited the LPS-induced expression of inducible nitric oxide synthase. In addition, CO (1 and 5 µM) and 5-HCO (15 µM) markedly suppressed the production of prostaglandin E2 (PGE2) and expression of cyclooxygenase-2, a key enzyme in PGE2 synthesis, in LPS-stimulated macrophages. Moreover, CO treatment significantly reduced monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) expression, whereas 5-HCO inhibited MCP-1, but not TNF-α expression. Both CO and 5-HCO inhibited the phosphorylation of inhibitor kappa B and transcriptional activation of nuclear factor kappa B (NF-κB) in LPS-stimulated macrophages. In addition, CO, but not 5-HCO, markedly reduced Akt phosphorylation. Taken together, these data suggest that CO, but not 5-HCO with a hydroxyethyl moiety on the D ring, has potent anti-inflammatory activity in LPS-stimulated macrophages through the downregulation of both the NF-κB and the Akt pathway.

Supporting Information

 
  • References

  • 1 Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 2005; 4: 281-286
  • 2 Lawrence T, Willoughby DA, Gilroy DW. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2002; 2: 787-795
  • 3 Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003; 54: 469-487
  • 4 Schmidt HH, Walter U. NO at work. Cell 1994; 78: 919-925
  • 5 Goodwin JS, Ceuppens J. Regulation of the immune response by prostaglandins. J Clin Immunol 1983; 3: 295-315
  • 6 Laskin DL, Pendino KJ. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 1995; 35: 655-677
  • 7 Pando MP, Verma IM. Signal-dependent and -independent degradation of free and NF-kappa B-bound IkappaBalpha. J Biol Chem 2000; 275: 21278-21286
  • 8 Timmermans K, Kox M, Scheffer GJ, Pickkers P. Plasma nuclear and mitochondrial DNA levels, and markers of inflammation, shock, and organ damage in patients with septic shock. Shock 2016; 45: 607-612
  • 9 Kowarik I, Säumel I. Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Plant Ecol 2007; 8: 207-237
  • 10 Jin MH, Yook J, Lee E, Lin CX, Quan Z, Son KH, Bae KH, Kim HP, Kang SS, Chang HW. Anti-inflammatory activity of Ailanthus altissima in ovalbumin-induced lung inflammation. Biol Pharm Bull 2006; 29: 884-888
  • 11 Kang TH, Choi IY, Kim SJ, Moon PD, Seo JU, Kim JJ, An NH, Kim SH, Kim MH, Um JY, Hong SH, Kim HM, Jeong HJ. Ailanthus altissima Swingle has anti-anaphylactic effect and inhibits inflammatory cytokine expression via suppression of nuclear factor-kappaB activation. In Vitro Cell Dev Biol Anim 2010; 46: 72-81
  • 12 Sladonja B, Susek M, Guillermic J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: assessment of its ecosystem services and potential biological threat. Environ Manage 2015; 56: 1009-1034
  • 13 Kubota K, Fukamiya N, Hamada T, Okano M, Tagahara K, Lee KH. Two new quassinoids, ailantinols A and B, and related compounds from Ailanthus altissima . J Nat Prod 1996; 59: 683-686
  • 14 Souleles C, Waigh R. Indole alkaloids of Ailanthus altissima . J Nat Prod 1984; 47: 741
  • 15 Kim HM, Kim SJ, Kim HY, Ryu B, Kwak H, Hur J, Choi JH, Jang DS. Constituents of the stem barks of Ailanthus altissima and their potential to inhibit LPS-induced nitric oxide production. Bioorg Med Chem Lett 2015; 25: 1017-1020
  • 16 Kim HM, Lee JS, Sezirahiga J, Kwon J, Jeong M, Lee D, Choi JH, Jang DS. A new Canthinone-type alkaloid isolated from Ailanthus altissima Swingle. Molecules 2016; 21: 642-651
  • 17 Dai J, Li N, Wang J, Schneider U. Fruitful decades for canthin-6-ones from 1952 to 2015: biosynthesis, chemistry, and biological activities. Molecules 2016; 21: 493
  • 18 OʼDonnell G, Gibbons S. Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum . Phytother Res 2007; 21: 653-657
  • 19 Ammirante M, Di Giacomo R, De Martino L, Rosati A, Festa M, Gentilella A, Pascale MC, Belisario MA, Leone A, Turco MC, De Feo V. 1-Methoxy-canthin-6-one induces c-Jun NH2-terminal kinase-dependent apoptosis and synergizes with tumor necrosis factor-related apoptosis-inducing ligand activity in human neoplastic cells of hematopoietic or endodermal origin. Cancer Res 2006; 66: 4385-4393
  • 20 Thouvenel C, Gantier JC, Duret P, Fourneau C, Hocquemiller R, Ferreira ME, Rojas de Arias A, Fournet A. Antifungal compounds from Zanthoxylum chiloperone var. angustifolium . Phytother Res 2003; 17: 678-680
  • 21 Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677-686
  • 22 Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2: 725-734
  • 23 Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18: 621-663
  • 24 Lu Y, Suh SJ, Kwak CH, Kwon KM, Seo CS, Li Y, Jin Y, Li X, Hwang SL, Kwon O, Chang YC, Park YG, Park SS, Son JK, Kim CH, Chang HW. Saucerneol F, a new lignan, inhibits iNOS expression via MAPKs, NF-kappaB and AP-1 inactivation in LPS-induced RAW264.7 cells. Int Immunopharmacol 2012; 12: 175-181
  • 25 Ojaniemi M, Glumoff V, Harju K, Liljeroos M, Vuori K, Hallman M. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol 2003; 33: 597-605
  • 26 Hsieh PW, Chang FR, Lee KH, Hwang TL, Chang SM, Wu YC. A new anti-HIV alkaloid, drymaritin, and a new C-glycoside flavonoid, diandraflavone, from Drymaria diandra . J Nat Prod 2004; 67: 1175-1177
  • 27 Chiou WF, Wu TS. 9-hydroxycanthin-6-one induces penile erection and delays ejaculation. J Sex Med 2012; 9: 1027-1036
  • 28 Murakami C, Fukamiya N, Tamura S, Okano M, Bastow KF, Tokuda H, Mukainaka T, Nishino H, Lee KH. Multidrug-resistant cancer cell susceptibility to cytotoxic quassinoids, and cancer chemopreventive effects of quassinoids and canthin alkaloids. Bioorg Med Chem 2004; 12: 4963-4968
  • 29 Siveen KS, Kuttan G. Modulation of humoral immune responses and inhibition of proinflammatory cytokines and nitric oxide production by 10-methoxycanthin-6-one. Immunopharmacol Immunotoxicol 2012; 34: 116-125
  • 30 De Feo V, Martino LD, Santoro A, Leone A, Pizza C, Franceschelli S, Pascale M. Antiproliferative effects of tree-of-heaven (Ailanthus altissima Swingle). Phytother Res 2005; 19: 226-230
  • 31 Kožuharova EL, Lebanova H, Getov I, Benbassat N, Kochmarov V. Ailanthus altissima (Mill.) Swingle – a terrible invasive pest in Bulgaria or potential useful medicinal plant?. Bothalia J 2014; 44: 213-230
  • 32 de Souza Almeida ES, Filho VC, Niero R, Clasen BK, Balogun SO, de Oliveira Martins DT. Pharmacological mechanisms underlying the anti-ulcer activity of methanol extract and canthin-6-one of Simaba ferruginea A. St-Hil. in animal models. J Ethnopharmacol 2011; 134: 630-636
  • 33 Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301-310
  • 34 Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol 2011; 6: 19-48
  • 35 Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29: 313-326
  • 36 Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 2010; 411: 1570-1579
  • 37 Andrade-Oliveira V, Camara NO, Moraes-Vieira PM. Adipokines as drug targets in diabetes and underlying disturbances. J Diabetes Res 2015; 2015: 681612
  • 38 Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990; 265: 621-636
  • 39 Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225-260
  • 40 Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol Rev 2006; 210: 171-186
  • 41 Schmitz ML, Bacher S, Kracht M. I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem Sci 2001; 26: 186-190
  • 42 Vermeulen L, De Wilde G, Notebaert S, Vanden Berghe W, Haegeman G. Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol 2002; 64: 963-970
  • 43 Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 2010; 1802: 396-405
  • 44 Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22: 240-273
  • 45 Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS. Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev 2008; 22: 1490-1500