Der Nuklearmediziner 2018; 41(01): 24-36
DOI: 10.1055/s-0043-121899
Dosimetrie
© Georg Thieme Verlag KG Stuttgart · New York

Quantitative Bildgebung für die Dosimetrie mit SPECT/CT

Quantitative SPECT/CT Imaging for Dosimetry
Johannes Tran-Gia
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
Michael Lassmann
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
Torsten Kuwert
2   Nuklearmedizinische Klinik, Universitätsklinikum Erlangen, Erlangen
,
Philipp Ritt
2   Nuklearmedizinische Klinik, Universitätsklinikum Erlangen, Erlangen
› Author Affiliations
Further Information

Publication History

Publication Date:
01 March 2018 (online)

Zusammenfassung

Die möglichst genaue Bestimmung von in Tumoren und kritischen Organen aufgenommenen Aktivitäten ist eine der Grundvoraussetzungen für die Planung und Überwachung der molekularen Radiotherapie mithilfe von interner Dosimetrie. Aufgrund zahlreicher Verbesserungen im Bereich der Hardware, v. a. aber auch im Bereich der Rekonstruktionssoftware, ist die SPECT/CT-Bildgebung zu einer der am besten geeigneten und am weitesten verbreiteten Bildgebungsmethoden für die Abschätzung von Organaktivitäten und Aktivitätsverteilungen geworden. Trotz ihres großen Potenzials hat die SPECT/CT-Bildgebung jedoch immer noch mit einer Reihe von Schwierigkeiten zu kämpfen, die eine volumenbasierte Bestimmung von Organaktivitäten erschweren. Insbesondere sind die Umrechnung von Impuls- in Aktivitätsverteilung, die Korrektur von Partialvolumeneffekten, sowie die Standardisierung von Aufnahme- und Rekonstruktionsprotokollen immer noch Gegenstand der Forschung.

In dieser Arbeit werden zunächst die wichtigsten Prinzipien der quantitativen SPECT/CT-Bildgebung vorgestellt, und anschließend einige Vorschläge und Hilfestellungen für die praktische Umsetzung gegeben.

Abstract

For planning and dosimetric monitoring of radiopharmaceutical therapies, an accurate determination of the amount of radiopharmaceutical in tumors or organs at risk is an important pre-requisite. Due to advances in hard- and software, especially in image reconstruction, SPECT/CT has become the standard method for determining the activity distribution throughout the patient’s body and for quantifying the absolute amount of activity at organ level.

Despite these recent advancements, some difficulties and unsolved problems still exist. For example, camera calibration, compensation of partial volume effects, and standardized acquisition and reconstruction protocols are fields of ongoing research.

In this work, the basic principles of quantitative imaging with SPECT/CT are briefly introduced. Additionally, protocols for absolute quantitative SPECT/CT in clinical practice are proposed.

 
  • Literatur

  • 1 Ritt P, Vija H, Hornegger J. et al. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging 2011; 38 (Suppl. 01) 69-77
  • 2 IAEA. Quantitative Nuclear Medicine Imaging: Concepts, Requirements and Methods. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY; 2014
  • 3 Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 2014; 41: 17-25
  • 4 Loevinger R, Budinger T, Watson E. MIRD Primer for Absorbed Dose Calculations, revised edition. New York: The Society of Nuclear Medicine. Inc; 1991
  • 5 Hänscheid H, Lassmann M, Luster M. et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. Journal of Nuclear Medicine 2006; 47: 648-654
  • 6 Flux G, Bardies M, Monsieurs M. et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 2006; 16: 47-59
  • 7 Lassmann M, Chiesa C, Flux G. et al. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging 2011; 38: 192-200
  • 8 Sanders JC, Kuwert T, Hornegger J. et al. Quantitative SPECT/CT Imaging of 177Lu with In Vivo Validation in Patients Undergoing Peptide Receptor Radionuclide Therapy. Mol Imaging Biol 2015; 17: 585-593
  • 9 Delker A, Fendler WP, Kratochwil C. et al. Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2016; 43: 42-51
  • 10 Jaszczak RJ, Greer KL, Floyd CE. et al. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984; 25: 893-900
  • 11 Koral KF, Wang XQ, Rogers WL. et al. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 1988; 29: 195-202
  • 12 Frey E, Tsui B. Modeling the scatter response function in inhomogeneous scattering media for SPECT. IEEE Transactions on Nuclear Science 1994; 41: 1585-1593
  • 13 LaCroix K, Tsui B, Hasegawa B. et al. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci 1994; 41: 2793-2799
  • 14 Blankespoor S, Xu X, Kaiki K. et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Transactions on Nuclear Science 1996; 43: 2263-2274
  • 15 Römer W, Reichel N, Vija HA. et al. Isotropic reconstruction of SPECT data using OSEM3D: correlation with CT. Academic radiology 2006; 13: 496-502
  • 16 El FakhriGN, Buvat I, Pélégrini M. et al. Respective roles of scatter, attenuation, depth-dependent collimator response and finite spatial resolution in cardiac single-photon emission tomography quantitation: a Monte Carlo study. Eur J Nucl Med Mol Imaging 1999; 26: 437-446
  • 17 Kessler RM, Ellis JrJR, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. LWW; 1984
  • 18 Geworski L, Knoop BO, de Cabrejas ML. et al. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 2000; 27: 161-169
  • 19 D'Arienzo M, Cazzato M, Cozzella ML. et al. Gamma camera calibration and validation for quantitative SPECT imaging with 177Lu. Appl Radiat Isot 2016; 112: 156-164
  • 20 Beauregard JM, Hofman MS, Pereira JM. et al. Quantitative 177Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging 2011; 11: 56-66
  • 21 Ljungberg M, Celler A, Konijnenberg MW. et al. MIRD Pamphlet No. 26: Joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med 2016; 57: 151-162
  • 22 Weineisen M, Schottelius M, Simecek J. et al. 68Ga-and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. Journal of Nuclear Medicine 2015; 56: 1169-1176
  • 23 Baum RP, Kulkarni HR, Schuchardt C. et al. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. Journal of Nuclear Medicine 2016; 57: 1006-1013
  • 24 Kwekkeboom DJ, Bakker WH, Kooij PP. et al. [177Lu-DOTA0, Tyr3] octreotate: comparison with [111In-DTPA0] octreotide in patients. Eur J Nucl Med Mol Imaging 2001; 28: 1319-1325
  • 25 Breeman WA, de Jong M, Visser TJ. et al. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur J Nucl Med Mol Imaging 2003; 30: 917-920
  • 26 Vija H. Introduction to xSPECT technology: Evolving multi-modal SPECT to become context-based and quantitative. USA: Siemens Medical Solutions; 2014
  • 27 Hellwig D, Marienhagen J, Menhart K. et al. Nuklearmedizin in Deutschland. Aktualisierte Kennzahlen und Trends aus offiziellen Statistiken. Nuklearmedizin 2017; 56: 55-68
  • 28 Dewaraja YK, Frey EC, Sgouros G. et al. MIRD Pamphlet No. 23: Quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med 2012; 53: 1310-1325
  • 29 Dewaraja YK, Ljungberg M, Green AJ. et al. MIRD Pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med 2013; 54: 2182-2188
  • 30 Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 3rd ed. Philadelphia: Elsevier; 2003
  • 31 Erlandsson K, Buvat I, Pretorius PH. et al. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 2012; 57: R119
  • 32 Chun SY, Fessler JA, Dewaraja YK. Correction for Collimator-Detector Response in SPECT Using Point Spread Function Template. IEEE Trans Med Imaging 2013; 32: 295-305
  • 33 Minarik D, Sjogreen GleisnerK, Ljungberg M. Evaluation of quantitative 90Y SPECT based on experimental phantom studies. Phys Med Biol 2008; 53: 5689-5703
  • 34 Vicente EM, Lodge MA, Rowe SP. et al. Simplifying volumes-of-interest (VOIs) definition in quantitative SPECT: Beyond manual definition of 3D whole-organ VOIs. Med Phys 2017; 44: 1707-1717
  • 35 Sandström M, Garske U, Granberg D. et al. Individualized dosimetry in patients undergoing therapy with 177Lu-DOTA-D-Phe1-Tyr3-octreotate. Eur J Nucl Med Mol Imaging 2010; 37
  • 36 Shcherbinin S, Celler A, Belhocine T. et al. Accuracy of quantitative reconstructions in SPECT/CT imaging. Physics in Medicine & Biology 2008; 53: 4595
  • 37 Patton JA, Turkington TG. SPECT/CT physical principles and attenuation correction. J Nucl Med Technol 2008; 36: 1-10
  • 38 Eric V, Anna C, Ronald H. Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT. Phys Med Biol 2007; 52: 1527
  • 39 Rong X, Du Y, Ljungberg M. et al. Development and evaluation of an improved quantitative 90Y bremsstrahlung SPECT method. Med Phys 2012; 39: 2346-2358
  • 40 Ogawa K, Harata Y, Ichihara T. et al. A practical method for position-dependent Compton-scatter correction in single photon emission CT. Medical Imaging, IEEE Transactions on 1991; 10: 408-412
  • 41 Beekman FJ, Jong HWAMd, Geloven Sv. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 2002; 21: 867-877
  • 42 Hutton BF, Buvat I, Beekman FJ. Review and current status of SPECT scatter correction. Phys Med Biol 2011; 56: R85-112
  • 43 Sandstrom M, Garske-Roman U, Granberg D. et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA octreotate treatment. J Nucl Med 2013; 54: 33-41
  • 44 Delker A, Ilhan H, Zach C. et al. The influence of early measurements onto the estimated kidney dose in [177Lu-DOTA0, Tyr3] octreotate peptide receptor radiotherapy of neuroendocrine tumors. Mol Imaging Biol 2015; 17: 726-734
  • 45 Pretorius PH, King MA, Johnson KL, Mukherjee JM, Dey J, Konik A. Combined respiratory and rigid body motion compensation in cardiac perfusion SPECT using a visual tracking system. Paper presented at: 2011 IEEE Nuclear Science Symposium Conference Record; 23–29 Oct. 2011. 2011
  • 46 Suga K, Kawakami Y, Zaki M. et al. Clinical utility of co-registered respiratory-gated 99mTc-Technegas/MAA SPECT-CT images in the assessment of regional lung functional impairment in patients with lung cancer. Eur J Nucl Med Mol Imaging 2004; 31: 1280-1290
  • 47 Pacilio M, Ferrari M, Chiesa C. et al. Impact of SPECT corrections on 3D-dosimetry for liver transarterial radioembolization using the patient relative calibration methodology. Med Phys 2016; 43: 4053
  • 48 Sanders J, Kuwert T, Vija A. et al. Quantitative bias from respiratory motion and finite system resolution for SPECT imaging of the kidneys – A simulation study. J Nucl Med 2017; 58: 519
  • 49 Celler A, Piwowarska-Bilska H, Shcherbinin S. et al. Evaluation of dead-time corrections for post-radionuclide-therapy 177Lu quantitative imaging with low-energy high-resolution collimators. Nucl Med Commun 2014; 35: 73-87
  • 50 Delpon G, Ferrer L, Lisbona A. et al. Correction of count losses due to deadtime on a DST-XLi (SMVi-GE) camera during dosimetric studies in patients injected with iodine-131. Phys Med Biol 2002; 47: N79
  • 51 Koral KF, Zasadny KR, Ackermann RJ. et al. Deadtime correction for two multihead Anger cameras in 131I dual-energy-window-acquisition mode. Med Phys 1998; 25: 85-91
  • 52 Elschot M, Nijsen JF, Dam AJ. et al. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization. PLoS One 2011; 6: e26174
  • 53 Park MA, Mahmood A, Zimmerman RE. et al. Adsorption of metallic radionuclides on plastic phantom walls. Med Phys 2008; 35: 1606-1610
  • 54 Zimmerman BE, Grošev D, Buvat I. et al. Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification: An IAEA phantom study. Z Med Phys 2017; 27: 98-112
  • 55 van Gils CA, Beijst C, van Rooij R. et al. Impact of reconstruction parameters on quantitative I-131 SPECT. Phys Med Biol 2016; 61: 5166-5182
  • 56 Kenneth FK, Anastasia Y, Yuni KD. Recovery of total I-131 activity within focal volumes using SPECT and 3D OSEM. Physics in Medicine & Biology 2007; 52: 777
  • 57 Mezzenga E, D'Errico V, D'Arienzo M. et al. Quantitative accuracy of 177Lu SPECT imaging for molecular radiotherapy. PLoS One 2017; 12: e0182888
  • 58 Sanders JC, Kuwert T, Hornegger J. et al. Quantitative SPECT/CT imaging of 177Lu with in vivo validation in patients undergoing peptide receptor radionuclide therapy. Mol Imaging Biol 2014; 17
  • 59 Marin G, Vanderlinden B, Karfis I. et al. Accuracy and precision assessment for activity quantification in individualized dosimetry of 177Lu-DOTATATE therapy. EJNMMI Phys 2017; 4: 7
  • 60 de Nijs R, Lagerburg V, Klausen TL. et al. Improving quantitative dosimetry in 177Lu-DOTATATE SPECT by energy window-based scatter corrections. Nucl Med Commun 2014; 35: 522-533
  • 61 Shcherbinin S, Piwowarska-Bilska H, Celler A. et al. Quantitative SPECT/CT reconstruction for 177Lu and 177Lu/90Y targeted radionuclide therapies. Phys Med Biol 2012; 57: 5733-5747
  • 62 Uribe CF, Esquinas PL, Tanguay J. et al. Accuracy of 177Lu activity quantification in SPECT imaging: a phantom study. EJNMMI Phys 2017; 4: 2