Der Nuklearmediziner 2018; 41(01): 95-101
DOI: 10.1055/s-0043-121239
Dosimetrie
© Georg Thieme Verlag KG Stuttgart · New York

Biodosimetrie in der Nuklearmedizin

Biodosimetry in nuclear medicine
Sarah Schumann
Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
Michael Lassmann
Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
Uta Eberlein
Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
› Author Affiliations
Further Information

Publication History

Publication Date:
01 March 2018 (online)

Zusammenfassung

Die Biodosimetrie leistet einen wichtigen Beitrag zum Verständnis der Wirkung ionisierender Strahlung. Ziel dieser Übersichtsarbeit ist es daher, Methoden und Ergebnisse der Biodosimetrie und deren Zusammenhang mit der physikalischen Dosimetrie vorzustellen. Die Daten dieser Arbeit wurden aus Veröffentlichungen nach 1995 erhoben. Die dabei verwendeten Methoden sind hauptsächlich die Analyse dizentrischer Chromosomen, der Mikrokern-Assay, sowie der γ-H2AX-Assay in Lymphozyten. Die Mehrzahl der Daten wurde während Radioiodtherapien erhoben. Etwa die Hälfte der Veröffentlichungen bezog die Ergebnisse nur auf die verabreichte Aktivität. Dosis-Wirkungsbeziehungen konnten nur in wenigen Arbeiten hergestellt werden. Insbesondere anhand der Daten, die mittels des γ-H2AX-Assays gewonnen wurden, konnte die Dosisabhängigkeit und der zeitliche Verlauf der DNA-Schadensantwort in vitro und in vivo mit ß-Emittern gezeigt werden. Weitere Arbeiten sind nötig, um die Reparatur von DNA-Schäden und deren Zusammenhang mit der Energiedosis nach nuklearmedizinischer Diagnostik und Therapie, insbesondere auch mit α-Strahlern, noch besser beschreiben zu können.

Abstract

Biodosimetry makes an important contribution to understanding the effect of ionizing radiation. The aim of this review is therefore, to present methods and results of biodosimetry and their relationship to physical dosimetry. The data of this review is collected from publications after 1995. The methods used are mainly the analysis of dicentric chromosomes, the micronucleus assay and the γ-H2AX assay in lymphocytes. The majority of data was collected during radioiodine therapy. About half of the studies only referred to the activity administered. Dose-effect relationships could only be established in a few publications. In particular, the γ-H2AX assay data allowed determining the dose-dependency and temporal course of the DNA damage response in vitro and in vivo with ß-emitters. Further work is needed in order to be able to better describe the repair of DNA damage and its relationship with the absorbed dose after nuclear medicine diagnostics and therapy, especially with α-emitters.

 
  • Literatur

  • 1 Pernot E, Hall J, Baatout S. et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat Res 2012; 751: 258-86 doi:10.1016/j.mrrev.2012.05.003
  • 2 Hall J, Jeggo PA, West C. et al. Ionizing radiation biomarkers in epidemiological studies - An update. Mutat Res 2017; 771: 59-84 doi:10.1016/j.mrrev.2017.01.001
  • 3 Gutierrez S, Carbonell E, Galofrea P. et al. A cytogenetic follow-up study of thyroid cancer patients treated with 131I. Cancer Lett 1995; 91: 199-204
  • 4 MʼKacher R, Legal JD, Schlumberger M. et al. Sequential biological dosimetry after a single treatment with iodine-131 for differentiated thyroid carcinoma. J Nucl Med 1997; 38: 377-380
  • 5 M'Kacher R, Schlumberger M, Legal JD. et al. Biologic dosimetry in thyroid cancer patients after repeated treatments with iodine-131. J Nucl Med 1998; 39: 825-9
  • 6 Monsieurs MA, Thierens HM, van de Wiele CV. et al. Estimation of risk based on biological dosimetry for patients treated with radioiodine. Nuclear medicine communications 1999; 20: 911-917
  • 7 Monsieurs MA, Thierens HM, Vral AM. et al. Adaptive response in patients treated with 131I. J Nucl Med 2000; 41: 17-22
  • 8 Ballardin M, Gemignani F, Bodei L. et al. Formation of micronuclei and of clastogenic factor(s) in patients receiving therapeutic doses of iodine-131. Mutat Res 2002; 514: 77-85
  • 9 Watanabe N, Kanegane H, Kinuya S. et al. The radiotoxicity of 131I therapy of thyroid cancer: assessment by micronucleus assay of B lymphocytes. J Nucl Med 2004; 45: 608-611
  • 10 Grawe J, Biko J, Lorenz R. et al. Evaluation of the reticulocyte micronucleus assay in patients treated with radioiodine for thyroid cancer. Mutat Res 2005; 583: 12-25 doi:10.1016/j.mrgentox.2005.01.010
  • 11 Stephan G, Kampen WU, Nosske D. et al. Chromosomal aberrations in peripheral lymphocytes of patients treated with radium-224 for ankylosing spondylitis. Radiat Environ Biophys 2005; 44: 23-28 doi:10.1007/s00411-005-0275-x
  • 12 Voth M, Klett R, Lengsfeld P. et al. Biological dosimetry after yttrium-90 citrate colloid radiosynoviorthesis. Nuklearmedizin 2006; 45: 223-228
  • 13 Serna A, Alcaraz M, Navarro JL. et al. Biological dosimetry and Bayesian analysis of chromosomal damage in thyroid cancer patients. Radiat Prot Dosimetry 2008; 129: 372-380 doi:10.1093/rpd/ncm444
  • 14 Joseph LJ, Bhartiya US, Raut YS. et al. Micronuclei frequency in peripheral blood lymphocytes of thyroid cancer patients after radioiodine therapy and its relationship with metastasis. Mutat Res 2009; 675: 35-40 doi:10.1016/j.mrgentox.2009.02.004
  • 15 Frigo A, Dardano A, Danese E. et al. Chromosome translocation frequency after radioiodine thyroid remnant ablation: a comparison between recombinant human thyrotropin stimulation and prolonged levothyroxine withdrawal. J Clin Endocrinol Metab 2009; 94: 3472-3476 doi:10.1210/jc.2008-2830
  • 16 Lassmann M, Hänscheid H, Gassen D. et al. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2010; 51: 1318-1325 doi:10.2967/jnumed.109.071357
  • 17 Klett R, Schnurbus-Duhs A, Modder G. et al. Biological dosimetry after radiosynoviorthesis with rhenium-186 sulphide and erbium-169 citrate. Nuklearmedizin 2012; 51: 17-25 doi:10.3413/nukmed-0423-11-08
  • 18 May MS, Brand M, Wuest W. et al. Induction and repair of DNA double-strand breaks in blood lymphocytes of patients undergoing 18F-FDG PET/CT examinations. Eur J Nucl Med Mol Imaging 2012; 39: 1712-1719 doi:10.1007/s00259-012-2201-1
  • 19 Doai M, Watanabe N, Takahashi T. et al. Sensitive immunodetection of radiotoxicity after iodine-131 therapy for thyroid cancer using gamma-H2AX foci of DNA damage in lymphocytes. Ann Nucl Med 2013; 27: 233-238 doi:10.1007/s12149-012-0678-0
  • 20 Denoyer D, Lobachevsky P, Jackson P. et al. Analysis of 177Lu-DOTA-octreotate therapy-induced DNA damage in peripheral blood lymphocytes of patients with neuroendocrine tumors. J Nucl Med 2015; 56: 505-511 doi:10.2967/jnumed.114.145581
  • 21 Eberlein U, Nowak C, Bluemel C. et al. DNA damage in blood lymphocytes in patients after 177Lu peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2015; 42: 1739-1749 doi:10.1007/s00259-015-3083-9
  • 22 Eberlein U, Scherthan H, Bluemel C. et al. DNA Damage in Peripheral Blood Lymphocytes of Thyroid Cancer Patients After Radioiodine Therapy. J Nucl Med 2016; 57: 173-179 doi:10.2967/jnumed.115.164814
  • 23 Schnarr K, Carter TF, Gillis D. et al. Biological Response of Positron Emission Tomography Scan Exposure and Adaptive Response in Humans. Dose Response. 2015; 13: 1559325815611904 doi:10.1177/1559325815611904
  • 24 Watanabe N, Yokoyama K, Kinuya S. et al. Evaluation of cytological radiation damage to lymphocytes after 131I metaiodobenzylguanidine therapy by the cytokinesis-blocked micronucleus assay. Ann Nucl Med 2016; 30: 624-628 doi:10.1007/s12149-016-1105-8
  • 25 Manning G, Taylor K, Finnon P. et al. Quantifying murine bone marrow and blood radiation dose response following 18F-FDG PET with DNA damage biomarkers. Mutat Res 2014; 770: 29-36 doi:10.1016/j.mrfmmm.2014.09.002
  • 26 Rogakou EP, Pilch DR, Orr AH. et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858-5868
  • 27 Eberlein U, Peper M, Fernandez M. et al. Calibration of the gamma-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes. PLoS One 2015; 10: e0123174 doi:10.1371/journal.pone.0123174
  • 28 Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005; 46: 1023-1027