Aktuelle Rheumatologie 2018; 43(03): 207-214
DOI: 10.1055/s-0043-121037
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Die Rolle des Metabolismus und metabolisch relevanter Faktoren in der Pathophysiologie rheumatischer Erkrankungen

The Role of Metabolism and Metabolically Relevant Factors in the Pathophysiology of Rheumatic Diseases
Marie-Lisa Hülser
1   Abteilung für Rheumatologie und klinische Immunologie, Kerckhoff-Klinik, Justus-Liebig-Universität Gießen, Bad Nauheim
,
Klaus W. Frommer
1   Abteilung für Rheumatologie und klinische Immunologie, Kerckhoff-Klinik, Justus-Liebig-Universität Gießen, Bad Nauheim
,
Ulf Müller-Ladner
1   Abteilung für Rheumatologie und klinische Immunologie, Kerckhoff-Klinik, Justus-Liebig-Universität Gießen, Bad Nauheim
› Author Affiliations
Further Information

Publication History

Publication Date:
27 November 2017 (online)

Zusammenfassung

Bei der Entstehung und dem Verlauf rheumatischer Erkrankungen spielen Adipositas, Metabolisches Syndrom (MetS) und Stoffwechselerkrankungen wie Diabetes eine wichtige Rolle. Wichtige Faktoren sind hierbei Fettgewebshormone wie z. B. Adiponektin und Leptin, aber auch andere biologisch aktive Faktoren des Metabolismus, wie die freien und gebundenen Fettsäuren im Blut und die Cholesterinwerte, welche den Krankheitsverlauf von Patienten mit rheumatischen Erkrankungen beeinflussen. Sowohl für Patienten mit rheumatoider Arthritis (RA) und Psoriasis-Arthritis (PsA) als auch für die nicht autoimmun beeinflusste Arthrose stellt Adipositas einen anerkannten Risikofaktor dar und ist somit von pathophysiologischer Bedeutung. Ein Einfluss auf das Ansprechen auf Medikamente wurde ebenso beobachtet. So erreichen übergewichtige PsA-Patienten, v. a. bei vermehrtem abdominalem Fett, unter TNFα-Blocker-Therapie mit geringerer Wahrscheinlichkeit eine minimale Krankheitsaktivität. In der Pathophysiologie rheumatischer Erkrankungen ist Fettgewebe außerdem wichtig als IL-6-Produzent, da IL-6 zu etwa einem Drittel im Fettgewebe produziert wird und eine Reduktion des Körpergewichts auch zur Reduktion des Serum-IL-6-Spiegels führt. Die Interaktion zwischen Immunsystem und biologisch aktiven Faktoren aus dem Metabolismus bei entzündlichen Erkrankungen funktioniert in beide Richtungen, wodurch die Wirknetzwerke sehr komplex werden. Der Entzündungsmarker C-reaktives Protein (CRP) bspw. bindet im Serum an Leptin und verhindert dadurch dessen Wirkung bzw. die Signalweiterleitung an die Zielzellen. Gleichzeitig fördert Leptin in der Leber die Bildung von CRP. Über diese gegenseitigen Einflüsse kann vermutlich CRP die Adipositas und deren Komorbiditäten beeinflussen. Der CRP-Spiegel korreliert aber auch negativ mit den HDL-Werten, und die Lipidwerte im Blut werden durch akute oder chronische Entzündung signifikant verändert. Auch die neuen Therapieansätze mit „Small Molecules“ wie z. B. Tofacitinib wirken sich nicht nur auf die Entzündung, sondern auch auf den Metabolismus aus. So wurde gezeigt, dass Patienten mit RA signifikant niedrigere Werte an Gesamtcholesterin, HDL-C, LDL-C und Apo-A1 im Vergleich zu gesunden Kontrollen aufweisen. Diese werden aber unter Behandlung mit Tofacitinib signifikant erhöht und nähern sich somit den Werten der gesunden Kontrollgruppe an.

Abstract

Obesity, metabolic syndrome (MetS) and other metabolic diseases such as diabetes play an important role in the onset and progression of rheumatic diseases. Hormones of the adipose tissue, e. g. adiponectin or leptin, as well as other metabolic factors including free fatty acids or cholesterol may influence the disease progression of patients with rheumatic diseases. For patients with rheumatoid arthritis (RA) or psoriatic arthritis (PsA) as well as patients with the non-autoimmune disease osteoarthritis, obesity represents a risk factor with pathophysiological importance. The response to drugs is also affected by obesity. For example, in PsA patients on anti-TNF treatment, there is a negative correlation between the amount of abdominal fat and the likelihood of achieving minimal disease activity. Within the pathophysiology of rheumatic diseases, adipose tissue is one of the most important sources of IL-6 as it produces up to one third of systemic IL-6, and a reduction of body weight leads to a reduction of IL-6 serum levels. The interaction between the immune system and biologically active metabolic factors is bidirectional, which leads to a highly complex network of interactions. C-reactive protein (CRP), for example, an inflammatory marker protein, binds to leptin, thus inhibiting its signal transduction and effects on target cells. At the same time, leptin promotes the secretion of CRP in the liver. This mechanism is possibly one of many pathways by which inflammation and metabolism influence each other. In addition, CRP serum levels inversely correlate with HDL levels, and serum lipid profiles change significantly in case of acute or chronic inflammation. New therapeutic approaches with “small molecules” such as tofacitinib not only lower inflammation, but also affect parts of the metabolism. RA patients, for example, have significantly lower serum levels of total cholesterol, HDL-C, LDL-C and Apo-A1 compared with healthy individuals. However, these levels increase in response to tofacitinib treatment and approximate those of healthy individuals.

 
  • Literatur

  • 1 Lohmander LS, Gerhardsson de Verdier M, Rollof J. et al Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study. Ann Rheum Dis 2009; 68: 490-496
  • 2 Nicolau J, Lequerre T, Bacquet H. et al. Rheumatoid arthritis, insulin resistance, and diabetes. Joint Bone Spine 2016; S1297-319X: 30153-30151
  • 3 Toussirot E, Michel F, Binda D. et al. The role of leptin in the pathophysiology of rheumatoid arthritis. Life Sci 140: 29-36
  • 4 Grotle M, Hagen KB, Natvig B. et al. Obesity and osteoarthritis in knee, hip and/or hand: an epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet Disord 2008; 9: 132
  • 5 Griffin TM, Huebner JL, Kraus VB. et al. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: effects of short-term exercise. Arthritis Rheum 2012; 64: 443-453
  • 6 Toda Y, Toda T, Takemura S. et al. Change in body fat, but not body weight or metabolic correlates of obesity, is related to symptomatic relief of obese patients with knee osteoarthritis after a weight control program. J Rheumatol 1998; 25: 2181-2186
  • 7 Gudbergsen H, Boesen M, Lohmander LS. et al. Weight loss is effective for symptomatic relief in obese subjects with knee osteoarthritis independently of joint damage severity assessed by high-field MRI and radiography. Osteoarthritis Cartilage 2012; 20: 495-502
  • 8 Albrecht K, Richter A, Callhoff J. et al. Body mass index distribution in rheumatoid arthritis: a collaborative analysis from three large German rheumatoid arthritis databases. Arthritis Res Ther 2016; 18: 149
  • 9 de Heredia FP, Gomez-Martinez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc 2012; 71: 332-338
  • 10 Weisberg SP, McCann D, Desai M. et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796-1808
  • 11 McDougall J, Bruce B, Spiller G. et al. Effects of a very low-fat, vegan diet in subjects with rheumatoid arthritis. J Altern Complement Med 2002; 8: 71-75
  • 12 Tedeschi SK, Costenbader KH. Is There a role for diet in the therapy of rheumatoid arthritis?. Curr Rheumatol Rep 2016; 18: 23
  • 13 Russolillo A, Iervolino S, Peluso R. et al. Obesity and psoriatic arthritis: from pathogenesis to clinical outcome and management. Rheumatology (Oxford) 2013; 52: 62-67
  • 14 Coimbra S, Catarino C, Santos-Silva A. The triad psoriasis-obesity-adipokine profile. J Eur Acad Dermatol Venereol 2016; 30: 1876-1885
  • 15 Ursini F, Naty S, Grembiale RD. Fibromyalgia and obesity: the hidden link. Rheumatol Int 2011; 31: 1403-1408
  • 16 Neumann L, Lerner E, Glazer Y. et al. A cross-sectional study of the relationship between body mass index and clinical characteristics, tenderness measures, quality of life, and physical functioning in fibromyalgia patients. Clin Rheumatol 2008; 27: 1543-1547
  • 17 Okifuji A, Bradshaw DH, Olson C. Evaluating obesity in fibromyalgia: neuroendocrine biomarkers, symptoms, and functions. Clin Rheumatol 2009; 28: 475-478
  • 18 Shapiro JR, Anderson DA, Danoff-Burg S. A pilot study of the effects of behavioral weight loss treatment on fibromyalgia symptoms. J Psychosom Res 2005; 59: 275-282
  • 19 Neumann E, Frommer KW, Müller-Ladner U. [Adiponectin as target in rheumatoid arthritis]. Z Rheumatol 2014; 73: 556-558
  • 20 Fain JN, Madan AK, Hiler ML. et al. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004; 145: 2273-2282
  • 21 Pereira SS, Alvarez-Leite JI. Low-grade inflammation, obesity, and diabetes. Curr Obes Rep 2014; 3: 422-431
  • 22 Li HM, Zhang TP, Leng RX. et al. Emerging role of adipokines in systemic lupus erythematosus. Immunol Res 2016; 64: 820-830
  • 23 Luo L, Liu M. Adipose tissue in control of metabolism. J Endocrinol 2016; 231: R77-R99
  • 24 Neumann E, Frommer KW, Vasile M. et al. Adipocytokines as driving forces in rheumatoid arthritis and related inflammatory diseases?. Arthritis Rheum 2011; 63: 1159-1169
  • 25 Shibata R, Ouchi N, Murohara T. Adiponectin and cardiovascular disease. Circ J 2009; 73: 608-614
  • 26 Senolt L, Pavelka K, Housa D. et al. Increased adiponectin is negatively linked to the local inflammatory process in patients with rheumatoid arthritis. Cytokine 2006; 35: 247-252
  • 27 Zhang Y, Proenca R, Maffei M. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-432
  • 28 Abella V, Scotece M, Conde J. et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 13: 100-109
  • 29 Bajzova M, Kovacikova M, Vitkova M. et al. Retinol-binding protein 4 expression in visceral and subcutaneous fat in human obesity. Physiol Res 2008; 57: 927-934
  • 30 Zha JM, Di WJ, Zhu T. et al. Comparison of gene transcription between subcutaneous and visceral adipose tissue in Chinese adults. Endocr J 2009; 56: 935-944
  • 31 Jung CH, Kim MS. Molecular mechanisms of central leptin resistance in obesity. Arch Pharm Res 2013; 36: 201-207
  • 32 Syrbe U, Callhoff J, Conrad K. et al. Serum adipokine levels in patients with ankylosing spondylitis and their relationship to clinical parameters and radiographic spinal progression. Arthritis Rheumatol 2015; 67: 678-685
  • 33 Yin J, Hou P, Wu Z. et al. Decreased levels of serum omentin-1 in patients with inflammatory bowel disease. Med Sci Monit 2015; 21: 118-122
  • 34 Frommer KW, Vasile M, Müller-Ladner U. et al. The adipokine omentin in late-stage rheumatoid arthritis and endstage osteoarthritis. jrheum 2017; 44: 539-541
  • 35 Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am 2008; 37: 635-646 viii-ix
  • 36 Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance--a mini-review. Gerontology 2009; 55: 379-386
  • 37 Frommer KW, Schaffler A, Rehart S. et al. Free fatty acids: potential proinflammatory mediators in rheumatic diseases. Ann Rheum Dis 2015; 74: 303-310
  • 38 Ruan H, Miles PD, Ladd CM. et al. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes 2002; 51: 3176-3188
  • 39 Chen K, Li F, Li J. et al. Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nat Med 2006; 12: 425-432
  • 40 Johnsson H, Panarelli M, Cameron A. et al. Analysis and modelling of cholesterol and high-density lipoprotein cholesterol changes across the range of C-reactive protein levels in clinical practice as an aid to better understanding of inflammation-lipid interactions. Ann Rheum Dis 2014; 73: 1495-1499
  • 41 Charles-Schoeman C, Gonzalez-Gay MA, Kaplan I. et al. Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: implications for the rheumatologist. Semin Arthritis Rheum 2016; 46: 71-80
  • 42 Costa L, Caso F, Atteno M. et al. Impact of 24-month treatment with etanercept, adalimumab, or methotrexate on metabolic syndrome components in a cohort of 210 psoriatic arthritis patients. Clin Rheumatol 33: 833-839
  • 43 Uysal KT, Wiesbrock SM, Marino MW. et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389: 610-614
  • 44 Tam LS, Tomlinson B, Chu TT. et al. Impact of TNF inhibition on insulin resistance and lipids levels in patients with rheumatoid arthritis. Clin Rheumatol 2007; 26: 1495-1498
  • 45 Kremer JM, Genovese MC, Keystone E. et al. Effects of baricitinib on lipid, apolipoprotein, and lipoprotein particle profiles in a phase iib study of patients with active rheumatoid arthritis. Arthritis Rheumatol 69: 943-952
  • 46 Khan IM, Perrard XY, Brunner G. et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond) 2015; 39: 1607-1618
  • 47 McCarey DW, McInnes IB, Madhok R. et al. Trial of Atorvastatin in Rheumatoid Arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet 2004; 363: 2015-2021
  • 48 Tascilar K, Dell'Aniello S, Hudson M. et al. Statins and risk of rheumatoid arthritis: A nested case-control study. Arthritis Rheumatol 2016; 68: 2603-2611
  • 49 Rasmussen-Torvik LJ, Shay CM, Abramson JG. et al. Ideal cardiovascular health is inversely associated with incident cancer: the Atherosclerosis Risk In Communities study. Circulation 2013; 127: 1270-1275