Volumetric Assessment of Swallowing Muscles:
A Comparison of CT and MRI Segmentation

ZUSAMMENFASSUNG
Einleitung Retrospektive, auf CT-Daten basierende Studien, beschreiben eine hohe Korrelation zwischen einer Atrophie der Schluckmuskulatur und dem Alter der Patienten, sowie dem Schweregrad einer Dysphagie und der Aspirationsgefahr. Die ionisierende Strahlung stellt bei CT-Untersuchungen jedoch eine ethische Barriere für eine weitere Evaluation dieser Resultate mittels prospektiver Studien dar. Daher besteht ein Bedarf die Effektivität anderer Methoden, die ohne Strahlung auskommen und hochwertige Weichteilkon-
tomography (CT). However, ionizing radiation poses an ethical barrier to research in prospective non-patient populations. Hence, there is a need to prove the efficacy of techniques that rely on noninvasive methods and produce high-resolution soft tissue images such as magnetic resonance imaging (MRI). The objective of this study was therefore to compare the segmentation results of swallowing muscles using CT and MRI.

Methods

Retrospective study of 21 patients (median age: 46.6; gender: 11 female) who underwent CT and MRI of the head and neck region within a time frame of less than 50 days because of suspected head and neck cancer using contrast agent. CT and MR images were segmented by two blinded readers using Medical Imaging Toolkit (MITK) and both modalities were tested (with the equivalence test) regarding the segmented muscle volumes. Adjustment for multiple testing was performed using the Bonferroni test and the potential time effect of the muscle volumes and the time interval between the modalities was assessed by a spearman correlation. The study was approved by the local ethics committee.

Results

The median volumes for each muscle belly of the digastic muscle derived from CT were 3051 mm3 (left) and 2969 mm3 (right), and from MRI they were 3218 mm3 (left) and 3027 mm3 (right). The median volume of the geniohyoid muscle was 6580 mm3 on CT and 6648 mm3 on MRI. The interrater reliability was high for all segmented muscles. The mean time interval between the CT and MRI examinations was 34 days (IQR 25; 41). The muscle differences of each muscle between the two modalities did not reveal significant correlation to the time interval between the examinations (digastric left r = 0.003 and digastric right r = −0.008; geniohyoid muscle r = 0.075).

Conclusion

CT-based segmentation and MRI-based segmentation of the digastic and geniohyoid muscle are equally feasible. The potential advantage of MRI for prospective studies is the absence of ionizing radiation.

Key Points

- CT-based segmentation and MRI-based segmentation of the swallowing muscles are equally feasible.
- The advantage of MRI is the absence of ionizing radiation.
- MRI should therefore be deployed for future prospective studies.

Citation Format

study was purely retrospective, the review board waived the need for informed consent. The identity of each documented patient is completely anonymized.

Imaging protocol and data post-processing
CT scans were performed on a 128-slice dual-source CT scanner (Somatom Definition Flash; Siemens Medical Solutions, Forchheim, Germany). CTA was obtained with the following parameters: 120 kV, 175 mAs, 1.0-mm slice reconstruction, 1-mm increment, 0.6-mm collimation, 0.8 pitch, H20f soft kernel. In all scans contrast medium was used (80 mL Ultravist 370 and 50 mL NaCl flush at 4 ml/s, scan start 6 seconds after bolus tracking at the level of the ascending aorta).

MRI was performed using a 3 Tesla MRI (Philips Ingenia 3.0 T, Philips, Eindhoven, The Netherlands). We obtained coronal and axial T1-weighted images (TE/TR = 7508/595 267 ms, Ti = 0 ms, slice thickness = 4.4 mm) using a phased array coil. In all patients 1 mmol/kg of gadolinium-based contrast agent (Gadolinium Omniscan; GE Healthcare, Chicago, IL, USA) was administered by the technical assistant.

On coronal CTA and MRI T1-weighted images, the geniohyoid muscle and the anterior parts of the digastric muscles were segmented slice by slice on both sides using Medical Imaging Toolkit (MITK 2.4.0.0, Heidelberg, Germany). In the following steps segmentations were adjusted semi-automatically in the other dimensions (Fig. 1, 2). This was done by two different readers blinded to the patient’s swallowing function and all clinical information.

Statistical analysis
Univariable distribution of metric variables is described by median and interquartile range. Differences between CT and MRI muscle volumes were tested using a test of equivalence. We defined an equivalence range of $x = 200 \text{ mm}^3$. The two diagnostic modalities were defined as equivalent when the differences between CT and MRI volumes were less than x.

Accordingly, for each of the three muscles ($i = 1/2$: left/right anterior belly of the digastric muscle, $i = 3$: geniohyoid muscle), the following one-sided null hypotheses were tested by Wilcoxon signed-rank test on a multiple significance level of 5 %: “CT volume \geq MRI volume + x (H_+) and “CT volume \leq MRI volume $- x$ (H_-). If null hypotheses H_+ and H_- can both be rejected for some i, the level of deviation between both modalities is less than x for muscle i, and consequently both modalities have been shown to be equivalent for muscle i.

Adjustment for multiple testing was performed using the closed testing procedure [5] with each intersection null hypothesis being tested using a Bonferroni test while taking into account that the intersection of null hypotheses H_+ and H_- is empty for each $i = 1, 2, 3$.

In order to investigate a potential time effect on the muscle volumes, we calculated muscle volume differences between MRI and CT (Δ “MR-CT” volume in mm^3) for each muscle and assessed the correlation with the time interval between the modalities using Spearman’s rho. Interrater reliability of the segmented muscle volumes was quantified using the intra-class correlation coefficient (ICC).

Fig. 1 CT segmentation process of the anterior body of the digastric muscle (left and right) and the geniohyoid muscle. A–E First the muscle was segmented slice by slice in coronal CT images (here exemplary the left digastric muscle). In the next step three-dimensional muscle volumes were calculated automatically using the programs interpolation function. F, G Finally the accuracy of the coronal segmentation was checked using the axial images and the sagittal multiplanar reconstructions. If necessary, corrections of the segmentation were performed using all three dimensions. Image H shows the 3D visualization of the left digastric muscle as segmented before.

Statistical analyses were performed in SPSS version 24 (IBM Corporation, Armonk NY).
Results

All included patients had tumors of the head and neck region (14 laryngeal cancers, 6 pharyngeal cancers, 1 sarcoma).

The median volumes for each anterior belly of the digastric muscle derived from CT were 3051 mm3 (left) and 2969 mm3 (right), and those derived from MRI were 3218 mm3 (left) and 3027 mm3 (right). The median volume of the geniohyoid muscle was 6580 mm3 on CT and 6648 mm3 on MRI (▶Table 1). Interrater reliability was high for all segmented muscles; values on CT were 0.996 (95% confidence interval = 0.991; 0.999) for the left anterior belly of the digastric muscle, 0.994 (0.986; 0.998) for the right anterior belly of the digastric muscle and 0.998 (0.995; 0.999) for the geniohyoid muscle and for MRI they were 0.976 (0.942; 0.990); 0.998 (0.994; 0.999); 0.999 (0.998; 1.000), respectively.

All six null hypotheses regarding CT- and MRI-based segmentation could be rejected at a multiple significance level of 5% (▶Table 2).

The mean time interval between the CT and MRI examinations was 34 days (IQR 25; 41). The muscle differences of each muscle between the two modalities did not reveal a noticeable correlation to the time interval between the examinations ("MRI – CT" volume: left and right anterior bellies of the digastric muscle ($r = 0.003$ and $r = -0.008$) and the geniohyoid muscle ($r = 0.075$).

Discussion

This is the first study to correlate the measurement of swallowing muscles using CT and MRI images. We included the anterior part of the digastric muscles on both sides and the geniohyoid muscle for their good contrast and discrimination in both techniques. Our results show that volume segmentation in both techniques is equal within an equivalence range of ± 200 mm3. Moreover, the high interrater reliability suggests a good reproducibility of our results in future studies.

So far, automated muscle segmentation has been used for example to quantify skeletal muscles of the abdomen and of the paravertebral lumbar muscles on CT and MR images [6, 7]. The technique we used has been established for more than a decade for different segmentation processes [8] including adipose tissue measurements [9] and segmentation of bone metastases [10]. In the clinical routine muscle segmentation can be useful especially when deployed automatically to determine whole-body muscle mass and thereby quantify the progress of chronic diseases or conditions, i.e., (autoimmune) myositis or sarcopenia [6, 7].

With regards to the swallowing musculature, previous studies used less precise CT-based two-dimensional parameters, in particular diameters of the geniohyoid muscle [1], CT-based evaluations of the density of the masseter and the medial pterygoid [11] and tongue thickness measurement with ultrasound [12].

Advantages of magnetic resonance imaging include better soft-tissue contrast compared with CT images allowing for better discrimination of above-mentioned muscles even for inexper-
Expereced raters. CT and MRI images are both easily reproducible offering an objective follow-up for each patient. According to our results, the potential disadvantage of MRI with longer acquisition times potentially leading to more swallowing artifacts does not seem to be relevant for muscle segmentation processes. Although the coil used for MRI dictates the head position to some extent with the possible consequence of a decreased length of the submental muscle group, we did not observe a systematical bias when deploying a multi-dimensional segmentation approach.

Our findings have implications for swallowing research and clinical management of dysphagia. A previous study of our group that found an association between atrophy of the submaxillary muscles, age and severity of dysphagia was based on CT [4]. However, prospective studies require noninvasive assessment without ionizing radiation. Quantifying decreases in submaxillary muscle volumes may provide insight into the underlying mechanisms of dysphagia caused by sarcopenia (the degeneration of skeletal muscle associated with aging) or muscle weakness.

Some limitations of this study that are due to the retrospective nature of data acquisition need to be addressed. We chose coronal and axial T1-weighted images as the MRI images. Even though our results confirm the equality of CT and MRI segmentation, three-dimensional MR images would probably allow for even more accurate measurements and should therefore be deployed in future prospective studies. The period in between the CT and MRI scans may have presented another possible limitation. To minimize the chance of a relevant muscle gain or loss during this lag time, we included only patients with a relatively short time span of less than 50 days between the two examinations (median follow-up time in our study was 34 days). Therefore, in our study the time between the two examinations showed no relevant impact on the muscle volume differences of both methods.

CONCLUSION/CLINICAL RELEVANCE

CT-based segmentation and MRI-based segmentation of the digastric and geniohyoid muscle are equally feasible. The potential advantage of MRI for prospective studies is the absence of ionizing radiation.

Conflict of Interest

The authors declare that they have no conflict of interest.
References

