Volumetric Assessment of Swallowing Muscles:
A Comparison of CT and MRI Segmentation

Volumetrische Erfassung der Schluckmuskulatur:
Ein Vergleich von CT und MRT Segmentation

Authors
Kim Barbara Sporns¹, Uta Hanning¹, Rene Schmidt², Paul Muhle¹, Rainer Wirth⁴, Sebastian Zimmer¹, Rainer Dziewas³, Sonja Suntrup-Krueger³, Peter Bernhard Sporns¹, Walter Heindel¹, Wolfram Schwindt¹

Affiliations
1 Department of Clinical Radiology, University Hospital of Muenster, Muenster, Germany
2 Institute of Biostatistics and Clinical Research, University of Muenster, Germany
3 Department of Neurology, University Hospital of Muenster, Germany
4 Department of Geriatric Medicine, Universitätsklinikum Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany

Key words
computed tomography, magnetic resonance imaging, segmentation, muscle atrophy, sarcopenia, swallowing muscles

received 09.07.2017
accepted 11.09.2017

Bibliography
DOI https://doi.org/10.1055/s-0043-120529
Published online: 3.11.2017
Fortschr Röntgenstr 2018; 190: 441–446
© Georg Thieme Verlag KG, Stuttgart - New York
ISSN 1438-9029

Correspondence
Kim Sporns, MD
Department of Clinical Radiology, University Hospital of Muenster, Albert-Schweitzer Campus 1, Gebäude A1, 48149 Muenster, Germany
Tel.: ++49/251/8344151
KimBarbara.Sporns@ukmuenster.de

ZUSAMMENFASSUNG


Methoden Retrospektive Studie von 21 Patienten (Medianes Alter 46,6 Jahre; Geschlecht: 11 Frauen) die ein CT und MRT der Halsregion in einem Zeitfenster von weniger als 50 Tagen bei Verdacht auf eine Neoplasie der Halsregion erhalten haben. Die CT’s und MRT’s wurden mittels Medical Imaging Toolkit (MITK) segmentiert und die erhaltenen Muskelvolumina wurden mittels Äquivalenztest getestet. Multiples Testen wurden mittels Bonferroni-Test korrigiert und der mögliche Einfluss der Zeit zwischen den Untersuchungen wurde mittels Korrelationsanalyse getestet. Das Einverständnis des lokalen Ethikkomites liegt vor.

Ergebnisse Die medianen Volumina für den Musculus digastricus im CT betragen 3051 mm³ (links) und 2969 mm³ (rechts), und im MRT 3218 mm³ (links) und 3027 mm³ (rechts). Das mediane Volumen des Musculus geniohyoideus betrug im CT 6580 mm³ und im MRT 6648 mm³. Die Interater Reliabilität war für alle segmentierten Muskeln hoch. Das mittlere Zeitintervall zwischen CT und MRT betrug 34 Tage (IQR 25; 41). Es lag keine signifikante Assoziation der Zeit zwischen den Untersuchungen und dem Unterschied der Muskelvolumina vor (linker M. digastricus r = 0,003 und rechter M. digastricus r = –0,008; M. geniohyoideus r = 0,075).

Schlussfolgerung Die CT und MRT basierte Volumetrie der Schluckmuskulatur ist möglich und gleichwertig. Der potenzielle Vorteil der MRT ist die fehlende ionisierende Strahlung.

Kernaussagen
▪ Die CT und MRT basierte Segmentation der Schluckmuskulatur ist gleichwertig.
▪ Der Vorteil der MRT ist die fehlende ionisierende Strahlung.
▪ Für prospektive Studien kommt damit primär die MRT in Betracht.

ABSTRACT

Purpose Recent retrospective studies have proposed a high correlation between atrophy of swallowing muscles, age, severity of dysphagia and aspiration status based on computed
tomography (CT). However, ionizing radiation poses an ethical barrier to research in prospective non-patient populations. Hence, there is a need to prove the efficacy of techniques that rely on non-invasive methods and produce high-resolution soft tissue images such as magnetic resonance imaging (MRI). The objective of this study was therefore to compare the segmentation results of swallowing muscles using CT and MRI.

**Methods**  
Retrospective study of 21 patients (median age: 46.6; gender: 11 female) who underwent CT and MRI of the head and neck region within a time frame of less than 50 days because of suspected head and neck cancer using contrast agent. CT and MR images were segmented by two blinded readers using Medical Imaging Toolkit (MITK) and both modalities were tested (with the equivalence test) regarding the segmented muscle volumes. Adjustment for multiple testing was performed using the Bonferroni test and the potential time effect of the muscle volumes and the time interval between the modalities was assessed by a spearman correlation. The study was approved by the local ethics committee.

**Results**  
The median volumes for each muscle belly of the digastic muscle derived from CT were 3051 mm$^3$ (left) and 2969 mm$^3$ (right), and from MRI they were 3218 mm$^3$ (left) and 3027 mm$^3$ (right). The median volume of the geniohyoid muscle was 6580 mm$^3$ on CT and 6648 mm$^3$ on MRI. The interrater reliability was high for all segmented muscles. The mean time interval between the CT and MRI examinations was 34 days (IQR 25; 41). The muscle differences of each muscle between the two modalities did not reveal significant correlation to the time interval between the examinations (digastric left $r = -0.003$ and digastric right $r = -0.008$; geniohyoid muscle $r = 0.075$).

**Conclusion**  
CT-based segmentation and MRI-based segmentation of the digastic and geniohyoid muscle are equally feasible. The potential advantage of MRI for prospective studies is the absence of ionizing radiation.

**Key Points**
- CT-based segmentation and MRI-based segmentation of the swallowing muscles are equally feasible.
- The advantage of MRI is the absence of ionizing radiation.
- MRI should therefore be deployed for future prospective studies.

**Citation Format**

---

**Purpose**

Different approaches for the morphometric assessment of skeletal muscles using a variety of imaging techniques have been reported. In contrast, changes in morphometry of the head and neck muscles have received little attention so far. Only initial results using two dimensional approaches in computed tomography (CT) [1] and comparing magnetic resonance imaging (MRI) and ultrasonographic measurements [2] have been published.

Several suprahypoid muscles play a key role in the characteristic movement of the hyoid bone during swallowing. For example, the geniohyoid (GH) muscle connects the posterior aspect of the mandible in the midline with the anterior surface of the body of the hyoid bone. The GH muscle’s contraction drives the hyoid bone upward and forward together with the mylohyoid, stylohyoid, and anterior belly of the digastic muscles [3]. Sarcopenia of these muscles may play an important role in reducing hyoid bone movement and thus results in an increased risk of dysphagia in affected patients [1].

Feng et al. [1] found an interesting association between atrophy of the geniohyoid muscle and aspiration status in older adults using simplified CT measurements. In a recent publication our group described an association of age and severity of dysphagia with muscle atrophy using three-dimensional semi-automated segmentation of different swallowing muscles [4]. However, ionizing radiation poses an ethical barrier to research when using CT imaging to investigate muscle size in prospective non-patient populations. So far, no studies have compared CT and MRI regarding assessment of this muscle group. Therefore, there is a need to prove the efficacy of techniques that rely on non-radiating methods and produce high-resolution soft tissue images, such as MRI.

This study aims to compare the muscle volumes of submental muscles (geniohyoid muscle and anterior belly of the digastic muscles) obtained from both CT and MRI images to see whether equal muscle volumes can be achieved with magnetic resonance imaging. If MRI provided similar results in the segmentation of swallowing muscles, changes in the musclechatur responsible for swallowing could be examined without ionizing radiation in prospective studies.

**Methods**

**Study design and setting**

A retrospective observational study was conducted using data of patients who had undergone computed tomography angiography and magnetic resonance imaging of the head and neck region at the Department of Clinical Radiology at the University Hospital of Muenster within a time frame of less than 50 days. All patients had undergone CT first and MRI afterwards using contrast agent because a neoplasia in the head and neck region was suspected.

Patients were included if: 1) they had undergone CT and MRI within a time frame of less than 50 days and 2) a neoplasia in the head and neck region was suspected. No patients were excluded.

Of the 21 included patients, 11 (52.4%) were female and 10 (47.6%) were male. The median age was 46.6 (35.6 – 57.8) years.

All examinations were part of routine clinical care. The study was approved by the local ethics committee. As the nature of the
study was purely retrospective, the review board waived the need for informed consent. The identity of each documented patient is completely anonymized.

**Imaging protocol and data post-processing**

CT scans were performed on a 128-slice dual-source CT scanner (Somatom Definition Flash; Siemens Medical Solutions, Forchheim, Germany). CTA was obtained with the following parameters: 120 kV, 175 mAs, 1.0-mm slice reconstruction, 1-mm increment, 0.6-mm collimation, 0.8 pitch, H20f soft kernel. In all scans contrast medium was used (80 mL Ultravist 370 and 50 mL NaCl flush at 4 ml/s, scan start 6 seconds after bolus tracking at the level of the ascending aorta).

MRI was performed using a 3 Tesla MRI (Philips Ingenia 3.0 T, Philips, Eindhoven, The Netherlands). We obtained coronal and axial T1-weighted images (TE/TR = 750/595 ms, Ti = 0 ms, slice thickness = 4.4 mm) using a phased array coil. In all patients 1 mmol/kg of gadolinium-based contrast agent (Gadolinium Omniscan; GE Healthcare, Chicago, IL, USA) was administered by the technical assistant.

On coronal CTA and MRI T1-weighted images, the geniohyoid muscle and the anterior parts of the digastric muscles were segmented slice by slice on both sides using Medical Imaging Toolkit (MITK 2.4.0.0, Heidelberg, Germany). In the following steps segmentations were adjusted semi-automatically in the other dimensions (▶Fig. 1, 2). This was done by two different readers blinded to the patient’s swallowing function and all clinical information.

**Statistical analysis**

Univariable distribution of metric variables is described by median and interquartile range. Differences between CT and MRI muscle volumes were tested using a test of equivalence. We defined an equivalence range of x = 200 mm³. The two diagnostic modalities were defined as equivalent when the differences between CT and MRI volumes were less than x.

Accordingly, for each of the three muscles (i = 1/2: left/right anterior belly of the digastric muscle, i = 3: geniohyoid muscle), the following one-sided null hypotheses were tested by Wilcoxon signed-rank test on a multiple significance level of 5 %: “CT volume ≥ MRI volume + x” (H₁⁺) and “CT volume ≤ MRI volume − x” (H₁⁻). If null hypotheses H₁⁺ and H₁⁻ can both be rejected for some i, the level of deviation between both modalities is less than x for muscle i, and consequently both modalities have been shown to be equivalent for muscle i.

Adjustment for multiple testing was performed using the closed testing procedure [5] with each intersection null hypothesis being tested using a Bonferroni test while taking into account that the intersection of null hypotheses H₁⁺ and H₁⁻ is empty for each i = 1, 2, 3.

In order to investigate a potential time effect on the muscle volumes, we calculated muscle volume differences between MRI and CT (Δ “MR-CT” volume in mm³) for each muscle and assessed the correlation with the time interval between the modalities using Spearman’s rho. Interrater reliability of the segmented muscle volumes was quantified using the intra-class correlation coefficient (ICC).

Statistical analyses were performed in SPSS version 24 (IBM Corporation, Armonk NY).
Results

All included patients had tumors of the head and neck region (14 laryngeal cancers, 6 pharyngeal cancers, 1 sarcoma).

The median volumes for each anterior belly of the digastric muscle derived from CT were 3051 mm$^3$ (left) and 2969 mm$^3$ (right), and those derived from MRI were 3218 mm$^3$ (left) and 3027 mm$^3$ (right). The median volume of the geniohyoid muscle was 6580 mm$^3$ on CT and 6648 mm$^3$ on MRI (Table 1). Interrater reliability was high for all segmented muscles; values on CT were 0.996 (95% confidence interval = 0.991; 0.999) for the left anterior belly of the digastric muscle, 0.994 (0.986; 0.998) for the right anterior belly of the digastric muscle and 0.998 (0.995; 0.999) for the geniohyoid muscle and for MRI they were 0.976 (0.942; 0.990); 0.998 (0.994; 0.999); 0.999 (0.998; 1.000), respectively.

All six null hypotheses regarding CT- and MRI-based segmentation could be rejected at a multiple significance level of 5% (Table 2).

The mean time interval between the CT and MRI examinations was 34 days (IQR 25; 41). The muscle differences of each muscle between the two modalities did not reveal a noticeable correlation to the time interval between the examinations (“MRI – CT” volume: left and right anterior bellies of the digastric muscle ($r = 0.003$ and $r = -0.008$) and the geniohyoid muscle ($r = 0.075$).

Discussion

This is the first study to correlate the measurement of swallowing muscles using CT and MRI images. We included the anterior part of the digastric muscles on both sides and the geniohyoid muscle for their good contrast and discrimination in both techniques. Our results show that volume segmentation in both techniques is equal within an equivalence range of x = 200 mm$^3$. Moreover, the high interrater reliability suggests a good reproducibility of our results in future studies.

So far, automated muscle segmentation has been used for example to quantify skeletal muscles of the abdomen and of the paravertebral lumbar muscles on CT and MR images [6, 7]. The technique we used has been established for more than a decade for different segmentation processes [8] including adipose tissue measurements [9] and segmentation of bone metastases [10]. In the clinical routine muscle segmentation can be useful especially when deployed automatically to determine whole-body muscle mass and thereby quantify the progress of chronic diseases or conditions, i.e., (autoimmune) myositis or sarcopenia [6, 7].

With regards to the swallowing musculature, previous studies used less precise CT-based two-dimensional parameters, in particular diameters of the geniohyoid muscle [1], CT-based evaluations of the density of the masseter and the medial pterygoid [11] and tongue thickness measurement with ultrasound [12].

Advantages of magnetic resonance imaging include better soft-tissue contrast compared with CT images allowing for better discrimination of above-mentioned muscles even for inexper-
ienced raters. CT and MRI images are both easily reproducible offering an objective follow-up for each patient. According to our results, the potential disadvantage of MRI with longer acquisition times potentially leading to more swallowing artifacts does not seem to be relevant for muscle segmentation processes. Although the coil used for MRI dictates the head position to some extent with the possible consequence of a decreased length of the submental muscle group, we did not observe a systematic bias when deploying a multi-dimensional segmentation approach.

Our findings have implications for swallowing research and clinical management of dysphagia. A previous study of our group that found an association between atrophy of the submental muscles, age and severity of dysphagia was based on CT [4]. However, prospective studies require noninvasive assessment without ionizing radiation. Quantifying decreases in submental muscle volumes may provide insight into the underlying mechanisms of dysphagia caused by sarcopenia (the degeneration of skeletal muscle associated with aging) or muscle weakness.

Some limitations of this study that are due to the retrospective nature of data acquisition need to be addressed. We chose coronal and axial T1-weighted images as the MRI images. Even though our results confirm the equality of CT and MRI segmentation, three-dimensional MR images would probably allow for even more accurate measurements and should therefore be deployed in future prospective studies. The period in between the CT and MRI scans may have presented another possible limitation. To minimize the chance of a relevant muscle gain or loss during this lag time, we included only patients with a relatively short time span of less than 50 days between the two examinations (median follow-up time in our study was 34 days). Therefore, in our study the time between the two examinations showed no relevant impact on the muscle volume differences of both methods.

**CONCLUSION/CLINICAL RELEVANCE**

CT-based segmentation and MRI-based segmentation of the digastric and geniohyoid muscle are equally feasible. The potential advantage of MRI for prospective studies is the absence of ionizing radiation.

**Conflict of Interest**

The authors declare that they have no conflict of interest.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison between CT and MRI muscle volumes of the anterior body of the digastric muscles (left and right) and the geniohyoid muscle.</th>
</tr>
</thead>
<tbody>
<tr>
<td>muscle volumes in mm³</td>
<td>median (IQR)</td>
</tr>
<tr>
<td>CT left anterior body of the digastric muscle, mm³</td>
<td>3051 (2808; 3612)</td>
</tr>
<tr>
<td>MRI left anterior body of the digastric muscle, mm³</td>
<td>3092 (2555; 3463)</td>
</tr>
<tr>
<td>CT right anterior body of the digastric muscle, mm³</td>
<td>2969 (2787; 3618)</td>
</tr>
<tr>
<td>MRI right anterior body of the digastric muscle, mm³</td>
<td>3027 (2665; 3580)</td>
</tr>
<tr>
<td>CT geniohyoid muscle, mm³</td>
<td>6580 (5891; 8145)</td>
</tr>
<tr>
<td>MRI geniohyoid muscle, mm³</td>
<td>6648 (5900; 8145)</td>
</tr>
</tbody>
</table>

CT = computed tomography; MRI = magnetic resonance imaging; IQR = interquartile range.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Equivalence test of CT and MRI muscle volumes of the anterior body of the digastric muscles (left and right) and the geniohyoid muscle.</th>
</tr>
</thead>
<tbody>
<tr>
<td>muscle volume</td>
<td>CT volume, median (IQR)</td>
</tr>
<tr>
<td>1</td>
<td>left anterior body of the digastric muscle, mm³</td>
</tr>
<tr>
<td>2</td>
<td>right anterior body of the digastric muscle, mm³</td>
</tr>
<tr>
<td>3</td>
<td>geniohyoid muscle, mm³</td>
</tr>
</tbody>
</table>

For each of the three muscles ($i = 1, 2, 3$) the following one-sided null hypotheses were tested by Wilcoxon signed-rank test: “$CT\text{ volume} \geq MRI\text{ volume} + x$ ($H_{i+}$) and “$CT\text{ volume} \leq MRI\text{ volume} - x$ ($H_{i-}$). We defined an equivalence range of $x = 200$ mm³. Given are multiplicity adjusted p-values for each null hypothesis.
References


