Neuroradiologie Scan 2017; 07(04): 273-296
DOI: 10.1055/s-0043-118838
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Amyloidassoziierte Krankheiten des Zentralnervensystems: multimodale Befundung

Multimodality review of amyloid-related diseases of the central nervous system
Michelle M. Miller-Thomas
,
Adam L. Sipe
,
Tammie L. S. Benzinger
,
Jonathan McConathy
,
Sarah Connolly
,
Katherine E. Schwetye

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Professor Dr. med. Michael Forsting, Essen.
Further Information

Publication History

Publication Date:
24 October 2017 (online)

Die Ablagerung von β-Amyloid im Zentralnervensystem ist die Ursache ganz verschiedener Krankheitsbilder. Trotz identischer Pathophysiologie unterscheiden sie sich markant hinsichtlich Klinik und bildgebenden Befunden. Dieser Artikel schildert die wichtigsten klinischen und bildgebenden Merkmale amyloidassoziierter Krankheiten, um dem Radiologen die für die korrekte Diagnose erforderlichen Kenntnisse an die Hand zu geben.

Abstract

Amyloid-b (Ab) is ubiquitous in the central nervous system (CNS), but pathologic accumulation of Ab results in four distinct neurologic disorders that affect middle-aged and elderly adults, with diverse clinical presentations ranging from chronic debilitating dementia to acute life-threatening intracranial hemorrhage. The characteristic imaging patterns of Ab-related CNS diseases reflect the pathophysiology of Ab deposition in the CNS. Ab is recognized as a key component in the neuronal damage that characterizes the pathophysiology of Alzheimer disease, the most common form of dementia. Targeted molecular imaging shows pathologic accumulation of Ab and tau protein, and fluorine 18 fluorodeoxyglucose positron emission tomography and anatomic imaging allow differentiation of typical patterns of neuronal dysfunction and loss in patients with Alzheimer disease from those seen in patients with other types of dementia. Cerebral amyloid angiopathy (CAA) is an important cause of cognitive impairment and spontaneous intracerebral hemorrhage in the elderly. Hemorrhage and white matter injury seen at imaging reflect vascular damage caused by the accumulation of Ab in vessel walls. The rare forms of inflammatory angiopathy attributed to Ab, Ab-related angiitis and CAA-related inflammation, cause debilitating neurologic symptoms that improve with corticosteroid therapy. Imaging shows marked subcortical and cortical inflammation due to perivascular inflammation, which is incited by vascular Ab accumulation. In the rarest of the four disorders, cerebral amyloidoma, the macroscopic accumulation of Ab mimics the imaging appearance of tumors. Knowledge of the imaging patterns and pathophysiology is essential for accurate diagnosis of Ab-related diseases of the CNS.

Kernaussagen
  • Die Akkumulation von Aβ im Gehirn gilt als entscheidender, die Alzheimer-Krankheit auslösender Faktor. Er stößt die Kaskade von Prozessen an, die zur Bildung von neurofibrillären Bündeln und zu zunehmendem Neuronenuntergang führen.

  • In der Vergangenheit dienten CT oder MRT bei Patienten mit Demenz zum Ausschluss anderer Demenzursachen als Alzheimer-Krankheit. Heute können die strukturelle MRT und die molekulare Bildgebung mittels PET zur Darstellung Alzheimer-typischer abnormer Befunde eingesetzt werden. Dies kann besonders bei Patienten hilfreich sein, bei denen die Ursache der Demenz ungewiss ist.

  • Lobäre und zerebelläre Blutungen, Leukenzephalopathie, kleine Infarkte in der Hirnrinde und Mikroblutungen sind die charakteristischen Merkmale einer CAA. Ihre Ursache besteht in einer erhöhten Brüchigkeit der Gefäße aufgrund der Ablagerung von Aβ-Protein in der Media kortikaler und leptomeningealer Gefäße. Das Auftreten multipler Hirnblutungen und deren charakteristische Verteilung bei einem älteren Patienten mit normalem Blutdruck sprechen für die Diagnose einer sporadischen CAA.

  • Zwar ist die Ablagerung von Aβ in den Gefäßwänden ein gemeinsames Merkmal beider CAA-Formen. Jedoch erleichtert die assoziierte ausgeprägte entzündliche Reaktion die Abgrenzung der inflammatorischen von der typischen CAA sowohl bei der pathologischen Untersuchung als auch bei der bildgebenden Darstellung.

  • Charakteristisches Zeichen eines zerebralen Amyloidoms ist eine Läsion mit solider Kontrastmittelanreicherung, deren Zentrum in der weißen Substanz liegt und die von einem Ödem umgeben ist. Erkrankungen mit ähnlichem Bildgebungsbefund wie beim zerebralen Amyloidom sind ZNS-Lymphom, primäres ZNS-Neoplasma und ZNS-Vaskulitis.

 
  • Literatur

  • 1 Wippold 2nd FJ, Cairns N, Vo K. et al. Neuropathology for the neuroradiologist: plaques and tangles. AJNR Am J Neuroradiol 2008; 29: 18-22
  • 2 Thal DR, Rüb U, Orantes M. et al. Phases of Ab-deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58 (12) 1791-1800
  • 3 American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington Va.: American Psychiatric Association; 2013
  • 4 Alzheimer’s Association. 2014 Alzheimer’s disease facts and figures. Alzheimers Demen 2014; 10: e47-e92
  • 5 Murray AD. Imaging approaches for dementia. AJNR Am J Neuroradiol 2012; 33: 1836-1844
  • 6 McKhann GM, Knopman DS, Chertkow H. et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging – Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 263-269
  • 7 McKhann G, Drachman D, Folstein M. et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939-944
  • 8 Albert MS, DeKosky ST, Dickson D. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging – Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 270-279
  • 9 Revett TJ, Baker GB, Jhamandas J. et al. Glutamate system, amyloid b peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 2013; 38: 6-23
  • 10 Braak H, Braak E. Staging of Alzheimer-related cortical destruction. Int Psychogeriatr 1997; 9 (Suppl. 01) S257-S261 discussion S269–S272
  • 11 Braak H, Thal DR, Ghebremedhin E. et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70: 960-969
  • 12 Bateman RJ, Xiong C, Benzinger TL. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367: 795-804
  • 13 O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34: 185-204
  • 14 McKeith IG, Galasko D, Kosaka K. et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB international workshop. Neurology 1996; 47: 1113-1124
  • 15 Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2012; 2: a006247
  • 16 Santa-Maria I, Varghese M, Ksiezak-Reding H. et al. Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of tau protein in aggresomes. J Biol Chem 2012; 287: 20522-20533
  • 17 Arriagada PV, Growdon JH, Hedley-Whyte ET. et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992; 42: 631-639
  • 18 Blennow K, Zetterberg H, Fagan AM. Fluid biomarkers in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2: a006221
  • 19 Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 2005; 37: 289-305
  • 20 Mott RT, Hulette CM. Neuropathology of Alzheimer’s disease. Neuroimaging Clin N Am 2005; 15: 755-765 , ix
  • 21 Ishii K. PET approaches for diagnosis of dementia. AJNR Am J Neuroradiol 2014; 35: 2030-2038
  • 22 Laakso MP, Soininen H, Partanen K. et al. MRI of the hippocampus in Alzheimer’s disease: sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiol Aging 1998; 19: 23-31
  • 23 Ochs AL, Ross DE, Zannoni MD. et al. Alzheimer’s disease neuroimaging initiative: comparison of automated brain volume measures obtained with NeuroQuant and FreeSurfer. J Neuroimaging 2015; 25: 721-727
  • 24 Enzinger C, Fazekas F, Matthews PM. et al. Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 2005; 64: 1704-1711
  • 25 Liu RS, Lemieux L, Bell GS. et al. A longitudinal study of brain morphometrics using quantitative magnetic resonance imaging and difference image analysis. Neuroimage 2003; 20: 22-33
  • 26 den HeijerT, van der Lijn F, Koudstaal PJ. et al. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 2010; 133: 1163-1172
  • 27 Barnes J, Bartlett JW, van de Pol LA. et al. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol Aging 2009; 30: 1711-1723
  • 28 Shi F, Liu B, Zhou Y. et al. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: meta-analyses of MRI studies. Hippocampus 2009; 19: 1055-1064
  • 29 Brown RK, Bohnen NI, Wong KK. et al. Brain PET in suspected dementia: patterns of altered FDG metabolism. RadioGraphics 2014; 34 (03) 684-701
  • 30 Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease: FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005; 32: 486-510
  • 31 Jagust W, Reed B, Mungas D. et al. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia?. Neurology 2007; 69: 871-877
  • 32 McConathy J, Sheline YI. Imaging biomarkers associated with cognitive decline: a review. Biol Psychiatry 2015; 77: 685-692
  • 33 Rowe CC, Ng S, Ackermann U. et al. Imaging b-amyloid burden in aging and dementia. Neurology 2007; 68: 1718-1725
  • 34 Mintun MA, Larossa GN, Sheline YI. et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67 (03) 446-452
  • 35 Morris JC, Roe CM, Grant EA. et al. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 2009; 66: 1469-1475
  • 36 Wong DF, Rosenberg PB, Zhou Y. et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med 2010; 51: 913-920
  • 37 Farrell ME, Kennedy KM, Rodrigue KM. et al. Association of longitudinal cognitive decline with amyloid burden in middle-aged and older adults: evidence for a dose-response relationship. JAMA Neurol 2017 74: 830-838
  • 38 Johnson KA, Minoshima S, Bohnen NI. et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement 2013; 9: e1-e16
  • 39 Johnson KA, Minoshima S, Bohnen NI. et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. J Nucl Med 2013; 54: 476-490
  • 40 Okamura N, Furumoto S, Fodero-Tavoletti MT. et al. Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain 2014; 137: 1762-1771
  • 41 Chien DT, Bahri S, Szardenings AK. et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 2013; 34: 457-468
  • 42 Okamura N, Harada R, Furumoto S. et al. Tau PET imaging in Alzheimer’s disease. Curr Neurol Neurosci Rep 2014; 14: 500
  • 43 James OG, Doraiswamy PM, Borges-Neto S. PET imaging of tau pathology in Alzheimer’s disease and tauopathies. Front Neurol 2015; 6: 38
  • 44 Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 2009; 461: 916-922
  • 45 Vonsattel JP, Myers RH, Hedley-Whyte ET. et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol 1991; 30: 637-649
  • 46 Greenberg SM, Vonsattel JP, Stakes JW. et al. The clinical spectrum of cerebral amyloid angiopathy: presentations without lobar hemorrhage. Neurology 1993; 43: 2073-2079
  • 47 Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry 2012; 83: 124-137
  • 48 Knudsen KA, Rosand J, Karluk D. et al. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001; 56: 537-539
  • 49 Zhang-Nunes SX, Maat-Schieman ML, van Duinen SG. et al. The cerebral b-amyloid angiopathies: hereditary and sporadic. Brain Pathol 2006; 16: 30-39
  • 50 Keage HA, Carare RO, Friedland RP. et al. Population studies of sporadic cerebral amyloid angiopathy and dementia: a systematic review. BMC Neurol 2009; 9: 3
  • 51 Yamada M. Cerebral amyloid angiopathy: an overview. Neuropathology 2000; 20: 8-22
  • 52 Chao CP, Kotsenas AL, Broderick DF. Cerebral amyloid angiopathy: CT and MR imaging findings. RadioGraphics 2006; 26: 1517-1531
  • 53 Haacke EM, DelProposto ZS, Chaturvedi S. et al. Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. AJNR Am J Neuroradiol 2007; 28: 316-317
  • 54 Linn J, Halpin A, Demaerel P. et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010; 74: 1346-1350
  • 55 Linn J, Herms J, Dichgans M. et al. Subarachnoid hemosiderosis and superficial cortical hemosiderosis in cerebral amyloid angiopathy. AJNR Am J Neuroradiol 2008; 29: 184-186
  • 56 Castro CaldasA, Silva C, Albuquerque L. et al. Cerebral amyloid angiopathy associated with inflammation: report of 3 cases and systematic review. J Stroke Cerebrovasc Dis 2015; 24: 2039-2048
  • 57 Kotsenas AL, Morris JM, Wald JT. et al. Tumefactive cerebral amyloid angiopathy mimicking CNS neoplasm. AJR Am J Roentgenol 2013; 200: 50-56
  • 58 Nouh A, Borys E, Gierut AK. et al. Amyloid-beta related angiitis of the central nervous system: case report and topic review. Front Neurol 2014; 5: 13
  • 59 Salvarani C, Hunder GG, Morris JM. et al. Ab-related angiitis: comparison with CAA without inflammation and primary CNS vasculitis. Neurology 2013; 81: 1596-1603
  • 60 Scolding NJ, Joseph F, Kirby PA. et al. Ab-related angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain 2005; 128: 500-515
  • 61 Martucci M, Sarria S, Toledo M. et al. Cerebral amyloid angiopathy-related inflammation: imaging findings and clinical outcome. Neuroradiology 2014; 56: 283-289
  • 62 Chung KK, Anderson NE, Hutchinson D. et al. Cerebral amyloid angiopathy related inflammation: three case reports and a review. J Neurol Neurosurg Psychiatry 2011; 82: 20-26
  • 63 Eng JA, Frosch MP, Choi K. et al. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol 2004; 55: 250-256
  • 64 Kinnecom C, Lev MH, Wendell L. et al. Course of cerebral amyloid angiopathy-related inflammation. Neurology 2007; 68: 1411-1416
  • 65 Landau D, Avgeropoulos N, Ma J. Cerebral amyloidoma mimicking intracranial tumor: a case report. J Med Case Reports 2010; 4: 308
  • 66 Fischer B, Palkovic S, Rickert C. et al. Cerebral AL lambda-amyloidoma: clinical and pathomorphological characteristics – review of the literature and of a patient. Amyloid 2007; 14: 11-19
  • 67 Gandhi D, Wee R, Goyal M. CT and MR imaging of intracerebral amyloidoma: case report and review of the literature. AJNR Am J Neuroradiol 2003; 24: 519-522
  • 68 Lee J, Krol G, Rosenblum M. Primary amyloidoma of the brain: CT and MR presentation. AJNR Am J Neuroradiol 1995; 16: 712-714