Klin Monbl Augenheilkd 2017; 234(09): 1119-1124
DOI: 10.1055/s-0043-118225
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Exsudative AMD in der OCT-Angiografie

Exudative AMD in OCT Angiography
Marie-Louise Farecki
1   Augenzentrum am St. Franziskus-Hospital, Münster
,
Matthias Gutfleisch
1   Augenzentrum am St. Franziskus-Hospital, Münster
,
Henrik Faatz
1   Augenzentrum am St. Franziskus-Hospital, Münster
,
Kai Rothaus
1   Augenzentrum am St. Franziskus-Hospital, Münster
,
Albrecht Lommatzsch
1   Augenzentrum am St. Franziskus-Hospital, Münster
2   Zentrum für Augenheilkunde, Universität Duisburg-Essen, Essen
,
Daniel Pauleikhoff
1   Augenzentrum am St. Franziskus-Hospital, Münster
2   Zentrum für Augenheilkunde, Universität Duisburg-Essen, Essen
› Author Affiliations
Further Information

Publication History

eingereicht 15 June 2017

akzeptiert 09 August 2017

Publication Date:
11 September 2017 (online)

Zusammenfassung

Die OCT-Angiografie bietet eine Kombination aus vaskulärer und struktureller Information und kann im Gegensatz zur konventionellen Fluoresceinangiografie nichtinvasiv und ohne Farbstoff choroidale Neovaskularisationen darstellen. Derzeit existiert noch keine gültige OCT-angiografische Klassifikation der AMD, obwohl verschiedene Muster und Aktivitätskriterien von Neovaskularisationen beobachtet werden konnten. Die OCT-Angiografie könnte so in Zukunft zu einem besseren Verständnis pathophysiologischer Mechanismen und therapeutischer Strategien beitragen.

Abstract

OCT angiography provides a combination of vascular and structural information. In contrast to conventional fluorescein angiography, there is no need for dye injection to give an image of choroidal neovascularisation. Although there is currently no classification of OCT angiography, different neovascular patterns can be observed, with criteria for activity. In the future, OCT angiography may help us to understand pathophysiological mechanisms and to develop therapeutic strategies.

 
  • Literatur

  • 1 Choi W, Mohler KJ, Potsaid B. et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS One 2013; 8: e81499
  • 2 Matsunaga D, Yi J, Puliafito CA. et al. OCT angiography in healthy human subjects. Ophthalmic Surg Lasers Imaging Retina 2014; 45: 510-515
  • 3 Spaide RF, Fujimoto JG, Waheed NK. Optical coherence tomography angiography. Retina 2015; 35: 2161-2162
  • 4 Novais EA, Waheed NK. Optical coherence tomography angiography of retinal vein occlusion. Dev Ophthalmol 2016; 56: 132-138
  • 5 Kuehlewein L, An L, Durbin MK. et al. Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography. Ophthalmic Surg Lasers Imaging Retina 2015; 46: 249-252
  • 6 Ishibazawa A, Nagaoka T, Takahashi A. et al. Optical coherence tomography angiography in diabetic retinopathy: A prospective pilot study. Am J Ophthalmol 2015; DOI: 10.1016/j.ajo.2015.04.021.
  • 7 Bandello F, Corbelli E, Carnevali A. et al. Optical coherence tomography angiography of diabetic retinopathy. Dev Ophthalmol 2016; 56: 107-112
  • 8 Zeimer M, Gutfleisch M, Heimes B. et al. Association between changes in macular vasculature in optical coherence tomography- and fluorescein-angiography and distribution of macular pigment in type 2 idiopathic macular telangiectasia. Retina 2015; 35: 2307-2316
  • 9 Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography. JAMA Ophthalmol 2015; 133: 66-73
  • 10 Maier M, Wehrmann K, Lohmann CP. et al. [OCT angiography findings in acute posterior multifocal placoid pigment epitheliopathy (APMPPE)]. Ophthalmol Z Dtsch Ophthalmol Ges 2017; 114: 60-65
  • 11 Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration?. Retina 2010; 30: 1333-1349
  • 12 Deutsche Ophthalmologische Gesellschaft. Stellungnahme des Berufsverbandes der Augenärzte Deutschlands, der Deutschen Ophthalmologischen Gesellschaft und der Retinologischen Gesellschaft: OCT-Angiografie in Deutschland: Präsentation, Nomenklatur und Zukunftswünsche (Stand Januar 2017). Klin Monatsbl Augenheilkd 2017; 234: 822-827
  • 13 Jung JJ, Chen CY, Mrejen S. et al. The incidence of neovascular subtypes in newly diagnosed neovascular age-related macular degeneration. Am J Ophthalmol 2014; 158: 769-779.e2
  • 14 Grossniklaus HE, Gass JD. Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. Am J Ophthalmol 1998; 126: 59-69
  • 15 Macular Photocoagulation Study Group. Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Arch Ophthalmol 1991; 109: 1220-1231
  • 16 Inoue M, Jung JJ, Balaratnasingam C. et al. COFT-1 Study Group. A comparison between optical coherence tomography angiography and fluorescein angiography for the imaging of type 1 neovascularization. Invest Ophthalmol Vis Sci 2016; 57: OCT314–323
  • 17 Roisman L, Zhang Q, Wang RK. et al. Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration. Ophthalmology 2016; 123: 1309-1319
  • 18 Palejwala NV, Jia Y, Gao SS. et al. Detection of nonexudative choroidal neovascularization age-related macular degeneration with optical coherence tomography angiography. Retina 2015; 35: 2204-2211
  • 19 Kuehlewein L, Bansal M, Lenis TL. et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol 2015; 160: 739-748.e2
  • 20 Coscas G, Lupidi M, Coscas F. et al. Optical coherence tomography angiography during follow-up: qualitative and quantitative analysis of mixed type I and II choroidal neovascularization after vascular endothelial growth factor trap therapy. Ophthalmic Res 2015; 54: 57-63
  • 21 Spaide RF. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization. Am J Ophthalmol 2015; 160: 6-16
  • 22 Sulzbacher F, Pollreisz A, Kaider A. et al. Vienna Eye Study Center. Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmol 2017; 95: 414-420
  • 23 De Carlo TE, Bonini Filho MA, Chin AT. et al. Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology 2015; 122: 1228-1238
  • 24 Costanzo E, Miere A, Querques G. et al. Type 1 choroidal neovascularization lesion size: Indocyanine green angiography versus optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016; 57: OCT307–313
  • 25 Malihi M, Jia Y, Gao SS. et al. Optical coherence tomographic angiography of choroidal neovascularization ill-defined with fluorescein angiography. Br J Ophthalmol 2017; 101: 45-50
  • 26 Farecki M-L, Gutfleisch M, Faatz H. et al. Characteristics of type 1 and 2 CNV in exudative AMD in OCT-angiography. Graefes Arch Clin Exp Ophthalmol 2017; 255: 913-921
  • 27 Novais EA, Adhi M, Moult EM. et al. Choroidal neovascularization analyzed on ultrahigh-speed swept-source optical coherence tomography angiography compared to spectral-domain optical coherence tomography angiography. Am J Ophthalmol 2016; 164: 80-88
  • 28 Miller AR, Roisman L, Zhang Q. et al. Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization. Invest Ophthalmol Vis Sci 2017; 58: 1499-1505
  • 29 Souied EH, El Ameen A, Semoun O. et al. Optical coherence tomography angiography of type 2 neovascularization in age-related macular degeneration. Dev Ophthalmol 2016; 56: 52-56
  • 30 El Ameen A, Cohen SY, Semoun O. et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography. Retina 2015; 35: 2212-2218
  • 31 Pauleikhoff LJB, Blobner K, Wehrmann K. et al. [Fluorescein, indocyanine green and optical coherence tomography angiography in patients with native exudative age-related macular degeneration]. Ophthalmologe 2017; DOI: 10.1007/s00347-017-0537-4.
  • 32 Liang MC, Witkin AJ. Optical coherence tomography angiography of mixed neovascularizations in age-related macular degeneration. Dev Ophthalmol 2016; 56: 62-70
  • 33 Jia Y, Bailey ST, Wilson DJ. et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 2014; 121: 1435-1444
  • 34 Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruchʼs membrane/choriocapillaris complex. Mol Aspects Med 2012; 33: 295-317
  • 35 Yannuzzi LA, Negrão S, Iida T. et al. Retinal angiomatous proliferation in age-related macular degeneration. Retina 2001; 21: 416-434
  • 36 Miere A, Querques G, Semoun O. et al. Optical coherence tomography angiography in early type 3 neovascularization. Retina 2015; 35: 2236-2241
  • 37 Kuehlewein L, Dansingani KK, de Carlo TE. et al. Optical coherence tomography of type 3 neovascularization secondary to age-related macular degeneration. Retina 2015; 35: 2229-2235
  • 38 Tan AC, Dansingani KK, Yannuzzi LA. et al. Type 3 neovascularization imaged with cross-sectional and en face optical coherence tomography angiography. Retina 2017; 37: 234-246