Klin Monbl Augenheilkd 2018; 235(10): 1148-1158
DOI: 10.1055/s-0043-111797
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Keratokonus: heutige Therapieoptionen

Therapeutic Options in Keratoconus
Frederik Raiskup
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden
,
Janine Lenk
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden
,
Robert Herber
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden
,
Zisis Gatzioufas
2   Corneo-Plastic Unit, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, United Kingdom of Great Britain and Northern Ireland
,
Eberhard Spörl
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden
› Author Affiliations
Further Information

Publication History

eingereicht 11 March 2017

akzeptiert 24 April 2017

Publication Date:
06 July 2017 (online)

Zusammenfassung

Die Inzidenz des Keratokonus wird in aktuellen Studien deutlich höher geschätzt als bisher angenommen, somit wird diese Hornhautektasie nicht mehr zu den seltenen Erkrankungen gezählt. Als einer der bedeutendsten Risikofaktoren für die Entstehung des Keratokonus wurde neben Atopie und Down-Syndrom das chronische Augenreiben definiert. Dies ist der durch Verhaltenstraining und konsequente Aufklärung einzig wirklich modifizierbare Risikofaktor. Weitere Therapieoptionen beinhalten Maßnahmen zur Visusverbesserung wie die Anpassung von Brillen und formstabilen Kontaktlinsen, die Implantation kornealer Ringsegmente oder phaker intraokularer Linsen. Im Falle einer Krankheitsprogression bietet das korneale Crosslinking ein effektives und sicheres Verfahren, sodass das Erfordernis einer Hornhauttransplantation in dieser Indikation immer seltener wird. Neuere Studien sehen auch einen positiven Effekt einer Kombination der bisher bei Keratokonus kontraindizierten photorefraktiven Keratektomie und dem Crosslinking. Die perforierende Keratoplastik stellt allerdings weiterhin den Goldstandard der chirurgischen Behandlung des Keratokonus im fortgeschrittenen Stadium dar, wobei in den letzten Jahren auch die lamellären Verfahren immer mehr in den Vordergrund rücken.

Abstract

A recent epidemiology study revealed that prevalence of keratoconus was much higher than previously assumed. Therefore, it is no longer deemed an “orphan disease”, as it has a relevant socioeconomic impact on the healthcare system. One of the most important risk factors for developing keratoconus is chronic eye rubbing which, apart from other known risk factors such as atopy or Downʼs syndrome, is the only modifiable factor. Informing the patient and offering behavior modifying therapies seems to be essential. Further therapeutic options regarding improvement of visual function include the wearing of glasses and the fitting of rigid gas permeable contact lenses and implantation of intrastromal corneal ring segments or phakic intraocular lenses. Corneal crosslinking (CXL) has been proven to be a highly effective and safe procedure in keratoconus cases showing disease progression. Significantly fewer corneal transplants were performed in this indication following the introduction of CXL. Recent studies reevaluated a combination of photorefractive keratectomy, which has been contraindicated until recently for patients with primary corneal ectasia with CXL, reporting a positive visual refractive outcome and stability of keratoconus. Still, penetrating keratoplasty is the gold standard of surgical treatment for end-stage keratoconus, whereas recently lamellar procedures have gained higher importance.

 
  • Literatur

  • 1 Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42: 297-319
  • 2 Gordon MO, Steger-May K, Szczotka-Flynn L. et al. Baseline factors predictive of incident penetrating keratoplasty in keratoconus. Am J Ophthalmol 2006; 142: 923-930
  • 3 Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol 1986; 101: 267-273
  • 4 Ihalainen A. Clinical and epidemiological features of keratoconus genetic and external factors in the pathogenesis of the disease. Acta Ophthalmol Suppl 1986; 178: 1-64
  • 5 Cozma I, Atherley C, James NJ. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asian and white patients. Eye (Lond) 2005; 19: 924-925
  • 6 Pearson AR, Soneji B, Sarvananthan N. et al. Does ethnic origin influence the incidence or severity of keratoconus?. Eye (Lond) 2000; 14: 625-628
  • 7 Godefrooij DA, de Wit GA, Uiterwaal CS. et al. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am J Ophthalmol 2017; 175: 169-172
  • 8 Gomes JAP, Tan D, Rapuano CJ. et al. Global consensus on keratoconus and ectatic diseases. Cornea 2015; 34: 359-369
  • 9 McMonnies CW. Management of chronic habits of abnormal eye rubbing. Cont Lens Anterior Eye 2008; 31: 95-102
  • 10 Bawazeer AM, Hodge WG, Lorimer B. Atopy and keratoconus: a multivariate analysis. Br J Ophthalmol 2000; 84: 834-836
  • 11 McMonnies CW. Mechanisms of rubbing-related corneal trauma in keratoconus. Cornea 2009; 28: 607-615
  • 12 Edwards M, McGhee CN, Dean S. The genetics of keratoconus. Clin Exp Ophthalmol 2001; 29: 345-351
  • 13 Touboul D, Benard A, Mahmoud AM. et al. Early biomechanical keratoconus pattern measured with an ocular response analyzer: curve analysis. J Cataract Refract Surg 2011; 37: 2144-2150
  • 14 Kallinikos P, Efron N. On the etiology of keratocyte loss during contact lens wear. Invest Ophthalmol Vis Sci 2004; 45: 3011-3020
  • 15 Wilson SE, He YG, Weng J. et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res 1996; 62: 325-327
  • 16 Bron AJ. The architecture of the corneal stroma. Br J Ophthalmol 2001; 85: 379-381
  • 17 Nakamura S, Arai Y, Takahashi KA. et al. Hydrostatic pressure induces apoptosis of chondrocytes cultured in alginate beads. J Orthop Res 2006; 24: 733-739
  • 18 Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 2000; 19: 297-321
  • 19 Salvador-Silva M, Aoi S, Parker A. et al. Responses and signaling pathways in human optic nerve head astrocytes exposed to hydrostatic pressure in vitro. Glia 2004; 45: 364-377
  • 20 McMonnies CW. Keratectasia, rubbing, yoga, weightlifting, and intraocular pressure. Cornea 2010; 29: 952
  • 21 Schuman JS, Massicotte EC, Connolly S. et al. Increased intraocular pressure and visual field defects in high resistance wind instrument players. Ophthalmology 2000; 107: 127-133
  • 22 Cristina Kenney M, Brown DJ. The cascade hypothesis of keratoconus. Cont Lens Anterior Eye 2003; 26: 139-146
  • 23 Bron AJ. Keratoconus. Cornea 1988; 7: 163-169
  • 24 Tuft SJ, Gregory WM, Buckley RJ. Acute corneal hydrops in keratoconus. Ophthalmology 1994; 101: 1738-1744
  • 25 McMonnies CW. Behaviour modification in the management of chronic habits of abnormal eye rubbing. Cont Lens Anterior Eye 2009; 32: 55-63
  • 26 Ortiz-Toquero S, Rodriguez G, de Juan V. et al. Rigid gas permeable contact lens fitting using new software in keratoconic eyes. Optom Vis Sci 2016; 93: 286-292
  • 27 Downie LE, Lindsay RG. Contact lens management of keratoconus. Clin Exp Optom 2015; 98: 299-311
  • 28 Sinjab M. Quick Guide to the Management of Keratoconus. Berlin, Heidelberg: Springer; 2012
  • 29 Stoiber J. Die stadiengerechte Therapie des Keratokonus. Klin Monatsbl Augenheilkd 2008; 225: R121-R136
  • 30 Müller-Treiber A. Kontaktlinsen Know-How. 3. Aufl.. Heidelberg: DOZ; 2009
  • 31 Leung KK. RGP fitting philosophies for keratoconus. Clin Exp Optom 1999; 82: 230-235
  • 32 Grünauer-Kloevekorn C. Kontaktlinsenanpassung: Bei komplizierten Hornhautsituationen; 21 Tabellen. Stuttgart: Thieme; 2007
  • 33 Van der Worp E. A Guide to scleral lens fitting. (2. ed.). Pacific University Libraries; 2015. Im Internet: http://commons.pacificu.edu/mono/10/ Stand: 06.06.2017
  • 34 Su S, Johns L, Rah MJ. et al. Clinical performance of KeraSoft(®) IC in irregular corneas. Clin Ophthalmol 2015; 9: 1953-1964
  • 35 Sultan P, Dogan C, Iskeleli G. A retrospective analysis of vision correction and safety in keratoconus patients wearing Toris K soft contact lenses. Int Ophthalmol 2016; 36: 799-805
  • 36 Visser ES, Soeters N, Tahzib NG. Scleral lens tolerance after corneal cross-linking for keratoconus. Optom Vis Sci 2015; 92: 318-323
  • 37 Unlu M, Yuksel E, Bilgihan K. Effect of corneal cross-linking on contact lens tolerance in keratoconus. Clin Exp Optom 2016; DOI: 10.1111/cxo.12470.
  • 38 Zhang Y, Conrad AH, Conrad GW. Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem 2011; 286: 13011-13022
  • 39 Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf 2013; 11: 65-74
  • 40 Chatzis N, Hafezi F. Progression of keratoconus and efficacy of pediatric [corrected] corneal collagen cross-linking in children and adolescents. J Refract Surg 2012; 28: 753-758
  • 41 Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. Part II. Clinical indications and results. Ocul Surf 2013; 11: 93-108
  • 42 Ehmke T, Seiler TG, Fischinger I. et al. Comparison of corneal riboflavin gradients using dextran and HPMC solutions. J Refract Surg 2016; 32: 798-802
  • 43 Efron N, Carney LG. Oxygen levels beneath the closed eyelid. Invest Ophthalmol Vis Sci 1979; 18: 93-95
  • 44 OʼBrart DP, Patel P, Lascaratos G. et al. Corneal cross-linking to halt the progression of keratoconus and corneal ectasia: seven-year follow-up. Am J Ophthalmol 2015; 160: 1154-1163
  • 45 Raiskup F, Theuring A, Pillunat LE. et al. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg 2015; 41: 41-46
  • 46 Wittig-Silva C, Chan E, Islam FM. et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology 2014; 121: 812-821
  • 47 Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg 2011; 37: 149-160
  • 48 Lang SJ, Messmer EM, Geerling G. et al. Prospective, randomized, double-blind trial to investigate the efficacy and safety of corneal cross-linking to halt the progression of keratoconus. BMC Ophthalmol 2015; 15: 78
  • 49 Caporossi A, Mazzotta C, Baiocchi S. et al. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. Am J Ophthalmol 2010; 149: 585-593
  • 50 Vinciguerra R, Romano MR, Camesasca FI. et al. Corneal cross-linking as a treatment for keratoconus: four-year morphologic and clinical outcomes with respect to patient age. Ophthalmology 2013; 120: 908-916
  • 51 Raiskup F, Terai N, Velika V. et al. [Corneal cross-linking with riboflavin and UVA in keratoconus]. Klin Monatsbl Augenheilkd 2016; 233: 938-944
  • 52 Blavatskaia ED, Viazovskii IA, Barsegian LG. Change in corneal curvature in intralamellar homotransplantation of discs of various diameter and thickness. Oftalmol Zh 1967; 22: 123-128
  • 53 Fleming JF, Wan WL, Schanzlin DJ. The theory of corneal curvature change with the intrastromal corneal ring. CLAO J 1989; 15: 146-150
  • 54 Kubaloglu A, Cinar Y, Sari ES. et al. Comparison of 2 intrastromal corneal ring segment models in the management of keratoconus. J Cataract Refract Surg 2010; 36: 978-985
  • 55 Nose W, Neves RA, Schanzlin DJ. et al. Intrastromal corneal ring – one-year results of first implants in humans: a preliminary nonfunctional eye study. Refract Corneal Surg 1993; 9: 452-458
  • 56 Colin J, Cochener B, Savary G. et al. Correcting keratoconus with intracorneal rings. J Cataract Refract Surg 2000; 26: 1117-1122
  • 57 Alio JL, Shabayek MH, Artola A. Intracorneal ring segments for keratoconus correction: long-term follow-up. J Cataract Refract Surg 2006; 32: 978-985
  • 58 Torquetti L, Ferrara G, Almeida F. et al. Intrastromal corneal ring segments implantation in patients with keratoconus: 10-year follow-up. J Refract Surg 2014; 30: 22-26
  • 59 Vega-Estrada A, Alio JL, Brenner LF. et al. Outcome analysis of intracorneal ring segments for the treatment of keratoconus based on visual, refractive, and aberrometric impairment. Am J Ophthalmol 2013; 155: 575-584.e1
  • 60 Ertan A, Kamburoglu G. Intacs implantation using a femtosecond laser for management of keratoconus: Comparison of 306 cases in different stages. J Cataract Refract Surg 2008; 34: 1521-1526
  • 61 Ferrara P, Torquetti L. Clinical outcomes after implantation of a new intrastromal corneal ring with a 210-degree arc length. J Cataract Refract Surg 2009; 35: 1604-1608
  • 62 Pena-Garcia P, Alio JL, Vega-Estrada A. et al. Internal, corneal, and refractive astigmatism as prognostic factors for intrastromal corneal ring segment implantation in mild to moderate keratoconus. J Cataract Refract Surg 2014; 40: 1633-1644
  • 63 Ertan A, Colin J. Intracorneal rings for keratoconus and keratectasia. J Cataract Refract Surg 2007; 33: 1303-1314
  • 64 Rabinowitz YS. INTACS for keratoconus and ectasia after LASIK. Int Ophthalmol Clin 2013; 53: 27-39
  • 65 Torquetti L, Berbel RF, Ferrara P. Long-term follow-up of intrastromal corneal ring segments in keratoconus. J Cataract Refract Surg 2009; 35: 1768-1773
  • 66 Torquetti L, Ferrara G, Almeida F. et al. Clinical outcomes after intrastromal corneal ring segments reoperation in keratoconus patients. Int J Ophthalmol 2013; 6: 796-800
  • 67 Ferrer C, Alio JL, Montanes AU. et al. Causes of intrastromal corneal ring segment explantation: clinicopathologic correlation analysis. J Cataract Refract Surg 2010; 36: 970-977
  • 68 Colin J. European clinical evaluation: use of intacs for the treatment of keratoconus. J Cataract Refract Surg 2006; 32: 747-755
  • 69 Coskunseven E, Jankov 2nd MR, Hafezi F. et al. Effect of treatment sequence in combined intrastromal corneal rings and corneal collagen crosslinking for keratoconus. J Cataract Refract Surg 2009; 35: 2084-2091
  • 70 Coskunseven E, Jankov 2nd MR, Grentzelos MA. et al. Topography-guided transepithelial PRK after intracorneal ring segments implantation and corneal collagen CXL in a three-step procedure for keratoconus. J Refract Surg 2013; 29: 54-58
  • 71 Alio JL, Toffaha BT, Pinero DP. et al. Cross-linking in progressive keratoconus using an epithelial debridement or intrastromal pocket technique after previous corneal ring segment implantation. J Refract Surg 2011; 27: 737-743
  • 72 Giacomin NT, Mello GR, Medeiros CS. et al. Intracorneal ring segments implantation for corneal ectasia. J Refract Surg 2016; 32: 829-839
  • 73 Sedaghat M, Ansari-Astaneh MR, Zarei-Ghanavati M. et al. Artisan iris-supported phakic IOL implantation in patients with keratoconus: a review of 16 eyes. J Refract Surg 2011; 27: 489-493
  • 74 Alfonso JF, Fernandez-Vega L, Lisa C. et al. Collagen copolymer toric posterior chamber phakic intraocular lens in eyes with keratoconus. J Cataract Refract Surg 2010; 36: 906-916
  • 75 Alió JL, Peña-García P, Abdulla GF. et al. Comparison of iris-claw and posterior chamber collagen copolymer phakic intraocular lenses in keratoconus. J Cataract Refract Surg 2014; 40: 383-394
  • 76 Izquierdo L, Henriquez MA, McCarthy M. Artiflex phakic intraocular lens implantation after corneal collagen cross-linking in keratoconic eyes. J Refract Surg 2011; 27: 482-487
  • 77 Guell JL, Morral M, Malecaze F. et al. Collagen crosslinking and toric iris-claw phakic intraocular lens for myopic astigmatism in progressive mild to moderate keratoconus. J Cataract Refract Surg 2012; 38: 475-484
  • 78 Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol 2006; 17: 356-360
  • 79 Ziaei M, Barsam A, Shamie N. et al. Reshaping procedures for the surgical management of corneal ectasia. J Cataract Refract Surg 2015; 41: 842-872
  • 80 Kanellopoulos AJ, Binder PS. Collagen cross-linking (CCL) with sequential topography-guided PRK: a temporizing alternative for keratoconus to penetrating keratoplasty. Cornea 2007; 26: 891-895
  • 81 Stojanovic A, Zhang J, Chen X. et al. Topography-guided transepithelial surface ablation followed by corneal collagen cross-linking performed in a single combined procedure for the treatment of keratoconus and pellucid marginal degeneration. J Refract Surg 2010; 26: 145-152
  • 82 Kymionis GD, Kontadakis GA, Kounis GA. et al. Simultaneous topography-guided PRK followed by corneal collagen cross-linking for keratoconus. J Refract Surg 2009; 25: S807-S811
  • 83 Mukherjee AN, Selimis V, Aslanides I. Transepithelial photorefractive keratectomy with crosslinking for keratoconus. Open Ophthalmol J 2013; 7: 63-68
  • 84 Alessio G, LʼAbbate M, Sborgia C. et al. Photorefractive keratectomy followed by cross-linking versus cross-linking alone for management of progressive keratoconus: two-year follow-up. Am J Ophthalmol 2013; 155: 54-65.e1
  • 85 Kymionis GD, Portaliou DM, Diakonis VF. et al. Posterior linear stromal haze formation after simultaneous photorefractive keratectomy followed by corneal collagen cross-linking. Invest Ophthalmol Vis Sci 2010; 51: 5030-5033
  • 86 Anwar M, Teichmann KD. Big-bubble technique to bare Descemetʼs membrane in anterior lamellar keratoplasty. J Cataract Refract Surg 2002; 28: 398-403
  • 87 Al-Torbak AA, Al-Motowa S, Al-Assiri A. et al. Deep anterior lamellar keratoplasty for keratoconus. Cornea 2006; 25: 408-412
  • 88 Borderie VM, Sandali O, Bullet J. et al. Long-term results of deep anterior lamellar versus penetrating keratoplasty. Ophthalmology 2012; 119: 249-255
  • 89 Reinhart WJ, Musch DC, Jacobs DS. et al. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the American Academy of Ophthalmology. Ophthalmology 2011; 118: 209-218
  • 90 [Anonym] Sektion Kornea der Deutschen Ophthalmologischen Gesellschaft (DOG). Deutsches Keratoplastikregister 2013. Im Internet: http://www.dog.org/?cat=121 Stand: 06.06.2017
  • 91 Seitz B, Szentmary N, Langenbucher A. et al. [PKP for keratoconus – from hand/motor trephine to excimer laser and back to femtosecond laser]. Klin Monatsbl Augenheilkd 2016; 233: 727-736
  • 92 Riss S, Heindl LM, Bachmann BO. et al. Microbubble incision as a new rescue technique for big-bubble deep anterior lamellar keratoplasty with failed bubble formation. Cornea 2013; 32: 125-129
  • 93 Melles GR, Remeijer L, Geerards AJ. et al. A quick surgical technique for deep, anterior lamellar keratoplasty using visco-dissection. Cornea 2000; 19: 427-432
  • 94 Melles GR, Lander F, Rietveld FJ. et al. A new surgical technique for deep stromal, anterior lamellar keratoplasty. Br J Ophthalmol 1999; 83: 327-333
  • 95 Schaub F, Heindl LM, Enders P. et al. Deep anterior lamellar keratoplasty: Experiences and results of the first 100 consecutive DALK from the University Eye Hospital of Cologne. Ophthalmologe 2016; DOI: 10.1007/s00347-016-0424-4.
  • 96 Schaub F, Enders P, Bachmann BO. et al. Effect of corneal collagen crosslinking on subsequent deep anterior lamellar keratoplasty (DALK) in keratoconus. Graefes Arch Clin Exp Ophthalmol 2017; 255: 811-816
  • 97 Seitz B, Cursiefen C, El-Husseiny M. et al. DALK and penetrating laser keratoplasty for advanced keratoconus. Ophthalmologe 2013; 110: 839-848
  • 98 Romano V, Iovieno A, Parente G. et al. Long-term clinical outcomes of deep anterior lamellar keratoplasty in patients with keratoconus. Am J Ophthalmol 2015; 159: 505-511
  • 99 Chen G, Tzekov R, Li W. et al. Deep anterior lamellar keratoplasty versus penetrating keratoplasty: a meta-analysis of randomized controlled trials. Cornea 2016; 35: 169-174
  • 100 Keane M, Coster D, Ziaei M. et al. Deep anterior lamellar keratoplasty versus penetrating keratoplasty for treating keratoconus. Cochrane Database Syst Rev 2014; (07) CD009700