Initial Experience with the Transapical Access for TEVAR
Erste Erfahrungen mit dem transapikal en Zugang für das Stenting der thorakalen Aorta

Authors
Andreas H. Mahnken1, Marc Iqrsusi2, Walter Hundt1, Rainer G. Moosdorf2

Affiliation
1 Diagnostic & Interventional Radiology, Philipps-University Marburg, Germany
2 Cardiac Surgery, Philipps-University Marburg, Germany

Key words
aorta, aneurysm, stents, transapical, stent graft

received 25.01.2017
accepted 27.03.2017

Bibliography
DOI https://doi.org/10.1055/s-0043-108995
Published online: 6.7.2017 | Fortschr Röntgenstr 2017; 189: 760–764 © Georg Thieme Verlag KG, Stuttgart · New York, ISSN 1438-9029

Correspondence
Prof. Andreas H. Mahnken
Diagnostic & Interventional Radiology, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany
Tel.: ++49/6421/58 66 230
mahnken@med.uni-marburg.de

ZUSAMMENFASSUNG

Material and Methoden Bei drei Patienten mit thorakalem Aortenaneurysma bei denen ein transfemoraler Zugang nicht möglich war (2 × chronisches Leriche-Syndrom; 1 × massives Kinking aller Gefäßabschnitte) wurde ein transapikaler Zugangsweg für die TEVAR gewählt. Über eine Mini-Thorakotomie wurde der Herzapex freigelegt und nach Direkt punktion ein Führungsdräht über die Aortenklappe in die A. thorakalis descendens gelegt. Hierüber erfolgte die TEVAR Prozedur unter angiografischer-Führung.

Schlussfolgerung Der transapikale Zugang bietet in ausgewählten Fällen eine mögliche und sichere Alternative zum transfemoralen Zugang für die TEVAR.

Kernaussagen
- Der transapikale Zugang sollte bei TEVAR bedacht werden, sofern die transfemorale Route nicht möglich ist.
- Die umgekehrte Positionierung des Stents muss bei der Planung der Prozedur und der Stentplatzierung bedacht werden.
- Im Fall von Vegetationen der Aortenklappe ist besondere Vorsicht geboten, um das Risiko eines Schlaganfalls und peripherer Embolien zu reduzieren.

ABSTRACT
Background The endovascular approach has become a mainstay in the treatment of aortic aneurysms. While the transfemoral approach is most commonly used, it is often inaccessible due to a vascular pathology, such as occlusion, tortuosity or heavy calcifications. The transapical access provides an alternative approach. The goal of this study is to report the feasibility of the transapical approach for total endovascular repair of thoracic aortic aneurysms (TEVAR).

Methods Three patients with thoracic aortic aneurysms with inaccessible femoral arteries underwent TEVAR via the transapical approach. For access, the apex of the left ventricle was exposed by a mini-thoracotomy. After left ventricular puncture, a stiff guidewire was placed through the aortic valve into the descending thoracic aorta. All stent grafts were delivered under fluoroscopic guidance.

Results All three procedures were technically successful with complete exclusion of the aneurysm without endoleak. One patient suffered spinal ischemia with subsequent paraplegia on day 4 after the procedure. The same patient died on day 43 after the procedure due to esophageal rupture. The two remaining patients did not present procedure-related problems. Conclusion The transapical access is a feasible and safe alternative to the transfemoral route in selected cases scheduled for TEVAR.
Introduction

First reported in 1994, total endovascular repair for thoracic aneurysms (TEVAR) has become a mainstay of therapy, particularly for treating high-risk patients [1]. TEVAR provides several advantages over open surgical repair, including fewer complications, less blood loss and shorter hospital stay. Early problems such as durability of the devices have been greatly improved over the years. Problems caused by the size and limited flexibility of the delivery systems were mostly overcome by the introduction of low-profile delivery systems and routine use of hydrophilic coatings. Moreover, advanced access techniques, such as crack-and-pave or application of one or more buddy wires, have been described [2]. Thereby access vessel-related limitations of TEVAR were reduced. Nevertheless, access-related limitations and complications are still to be considered, particularly in patients with small vessel size or complex anatomy of the access vessels. This may eventually lead to devastating sequelae.

In these patients alternative access routes need to be considered. The transapical access has proven feasible in transcatheter aortic valve implantation (TAVI) [3]. First published in 2009 for treating an aortic arch aneurysm, TEVAR as an antegrade approach towards the descending thoracic aorta also proved feasible [4]. In this technical report we describe the transapical access technique, our early results using this approach for treating aneurysms in the descending aorta and provide a review on the available literature for this approach.

Technique

Informed consent was obtained from all patients prior to the procedure. All procedures were performed in a hybrid operating room with a fixed C-arm fluoroscopy unit (Artis Zee, Siemens, Erlangen, G) under general anesthesia. First an i.v. antibiotic (Cefuroxim 1.5 g, Actavis, Hafnarfjörður, IS) was administered and systemic heparinization (100 U/kg) with a target-activated coagulation time of 250 seconds was achieved. Thereafter, the left ventricular apex was surgically exposed by means of a left thoracic mini-thoracotomy at the level of the sixth intercostal space. Prior to puncture of the left-ventricular apex, two-paired felt-pledgeted purse-string sutures were applied at the left ventricular apex and secured by tourniquets. Thereafter, the left ventricle was punctured with an 18G needle (Surflo, Terumo, Leuven, BE) and a hydrophilic guidewire was advanced through the aortic valve into the ascending aorta. In Seldinger’s technique a short 6F introducer sheath (Pinnacle, Terumo, Leuven, BE) was then placed distal to the aortic valve. Via a pigtail catheter an arteriogram of the aorta and the supra-aortic arteries was obtained in the left anterior oblique position (LAO 40°) in order to depict the aneurysm anatomy and to have an orthogonal view on the origin of the left subclavian artery. The pathology was crossed by means of a hydrophilic guidewire and exchanged for a stiff Lunderquist guidewire (Cook, Bloomington, IN) which was placed deep in the abdominal aorta far beyond the intended distal landing zone. A 24F introducer sheath (Extra Large Check-Flo Introducer, Cook, Bloomington, IN) was advanced into the left ventricle without crossing the aortic valve and manually stabilized throughout the procedure. A standard thoracic stent graft, sized to meet the individual patient’s pathology, was introduced and advanced under fluoroscopic control. After the target position was reached, the blood pressure was lowered medically aiming for a target mean pressure of about 55 mmHg and the stent graft was released under fluoroscopic control. Care was taken not to cover the left subclavian or left carotid artery, as in the reversed position there were no bare springs through which the supra-aortic perfusion could be maintained. After the deployment system was removed, a 40-mm Coda balloon (Cook, Bloomington, IN) was introduced and the proximal and distal landing zones were carefully molded to the aortic wall. A final angiogram was obtained and the wire and sheaths were removed while the purse-string sutures were tightened, thus closing the left ventricular apex. A chest tube was placed in the left thoracic cavity. The thoracic incision was closed using a standard surgical technique. Finally the patients were transferred to the intensive care unit (ICU).

Case 1

A 79-year-old male presented with chest pain and a known thoracoabdominal aortic aneurysm (TAAA). He had undergone endovascular treatment of an infrarenal abdominal aneurysm 13 years before. Contrast-enhanced computed tomography (CT) revealed progression of his known TAAA with a progression in diameter of 1 cm within 9 months and a maximum diameter of 6.7 cm. There were also two new penetrating aortic ulceres present. He was diagnosed with symptomatic TAAA and stent graft placement was considered the treatment of choice. As CT showed a tortuous anatomy of the iliac arteries with stenosis and severe double curve kinking of the thoracic aorta, a flexible low-profile stent graft (Zenith alpha, Cook, Bloomington, IN) was chosen. The procedure commenced in standard fashion via a left common femoral artery approach. The femoral artery was surgically exposed. After a Lunderquist wire was placed in the ascending aorta, the stent graft was advanced into the aorta, but it proved...
impossible to properly place the stent across the proximal part of the double kinking of the thoracic aorta. An attempt to straighten the access with 3 additional Lunderquist wires inserted in parallel failed. Therefore, it was decided to change access to a transapical approach as described above. A 46–46–233 mm Zenith alpha aortic stent graft (Cook, Bloomington, IN) and a 46–46–150 mm Valiant Captivia stent graft (Medtronic, Santa Rosa, CA) were implanted with a 4 cm overlap. Contrast-enhanced CT obtained the following day confirmed complete exclusion of the aneurysm. He was discharged from hospital 11 days after the procedure. His follow-up was unremarkable and there were no signs of stent migration or failure on a CT scan 6 months after the procedure. Eventually the patient died 9 months after the procedure from acute pneumonia.

Case 2

A 66-year-old patient presented with acute chest pain. He had a history of myocardial infarction treated by coronary artery bypass graft surgery and coronary stenting with subsequent double antiplatelet medication. Contrast-enhanced CT revealed a contained rupture of the thoracic aorta with compression of the left atrium (Fig. 1). Furthermore, severe iliac artery stenoses were diagnosed. Urgent aortic stent graft placement was indicated. The procedure commenced via the left common femoral artery as the left iliac arteries appeared to be more suited for endovascular treatment. First “cracking-and-paving” of the left iliac axis with placement of a 10 mm bare metal stent (SMART Flex, Cordis, Fremont, CA) was performed. However, preparation of the iliac arteries proved insufficient for advancing the 24F deployment.
system of the 38 – 38 – 200 mm Valiant Captivia endoprosthesis (Medtronic, Santa Rosa, CA). Therefore, the transfemoral procedure was abandoned and a transapical approach was chosen. The same 38 – 38 – 200 mm endoprosthesis was successfully deployed and the procedure was completed uneventfully. The day after the procedure, he presented with incomplete paraplegia, which was considered to be due to overstenting of the artery of Adamkievicz without protective liquor drainage. The latter was considered too risky due to the double antiplatelet medication. Contrast-enhanced CT two days after the procedure showed complete exclusion of the rupture with regular perfusion of the aorta and excellent run-off. The patient was transferred to a neurologic rehabilitation center on day 16 after the procedure. On day 38 after the procedure, he was re-admitted with improved neurologic function, but a new episode of chest pain. Contrast-enhanced CT showed no device migration, but the perigraft hematoma at the level of the left atrium was completely gone. Subsequent endoscopy revealed a 6 cm long tear of the esophagus at the same level. It was assumed to be secondary to the pressure from the extensive hematoma with rupture of the hematoma into the esophagus. The patient refused any kind of treatment and died 43 days after the initial procedure from mediastinitis due to the esophageal rupture.

Case 3

A 60-year-old man under treatment for mantle-cell lymphoma was newly diagnosed with a penetrating aortic ulcer directly distal to the left subclavian artery. The ulcer was diagnosed on the basis of contrast-enhanced CT performed as a regularly scheduled staging examination. Based on this diagnosis, endovascular treatment was deemed the therapy of choice. As the patient showed only small iliac arteries with a diameter of 5.5 mm for both common iliac arteries, a transfemoral access was deemed inappropriate and elective transapical stent graft placement was considered. The procedure was performed as described above and a 32 – 32 – 200 mm Valiant Captivia endoprosthesis (Medtronic, Santa Rosa, CA) was successfully placed. The procedure was completed without complications and the patient was transferred to the ICU. His further course was uneventful and follow-up CT prior to discharge showed a correct stent position with preserved perfusion of all supra-aortic vessels. He was discharged 10 days after the procedure and oncologic therapy was continued. During a 24-month follow-up period, no further events occurred and the patient is doing well.

Discussion

TEVAR in patients without sufficient peripheral vascular access or a very tortuous aortic anatomy poses a challenge, despite major improvements in the design of both stent grafts and deployment systems. While adjunctive techniques such as “crack-and-pave”, iliac conduits and direct aortic access have been described [2], these options may not provide the anticipated success or are quite invasive. Access to the target lesion is a relevant issue in patients with iliofemoral diseases such as stenosis, severe calcification, and tortuosity precluding delivery of an aortic stent graft in about 10 – 25 % of patients [5]. Therefore, an alternative approach, avoiding the iliac segment and providing more direct access with only a short distance towards the target is appealing.

With the introduction of TAVI in the clinical routine, the transapical approach became a routinely used option [3]. Thus, the use of the transapical access for stenting of the thoracic aorta seems an obvious approach. Consequently initial animal data on this technique proving the feasibility and safety of this novel approach

<table>
<thead>
<tr>
<th>author/year</th>
<th>patients [n]</th>
<th>pathology</th>
<th>location</th>
<th>adjunct procedures</th>
<th>results (follow-up)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDonald 2009 [4]</td>
<td>1</td>
<td>false aneurysm</td>
<td>aortic arch</td>
<td>femoral-to-carotid artery bypass</td>
<td>died day 10, respiratory failure</td>
</tr>
<tr>
<td>Kölbel 2011 [10]</td>
<td>1</td>
<td>true aneurysm</td>
<td>aortic arch</td>
<td>bilateral iliac-to-subclavian artery bypass & left carotid-to-subclavian artery bypass</td>
<td>died 2 h after procedure, myocardial infarction</td>
</tr>
<tr>
<td>Weigang 2013 [12]</td>
<td>1</td>
<td>n.a.</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>true aneurysm</td>
<td>descending aorta</td>
<td>none</td>
<td>technical success (n.a.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ruptured true aneurysm</td>
<td>descending aorta</td>
<td>none</td>
<td>died week 3, multiorgan failure</td>
</tr>
</tbody>
</table>
was published in 2008 [6]. The same group reported their first patient treated with this technique only one year later [4]. Nowa-
days this technique is discussed as a potentially ideal access for
treating the ascending aorta. For treating the aortic arch and
descending aorta, this approach has remained a niche technique
and so far only few reports describe the use of transapical TEVAR
(▶ Table 1). Only 7 patients with distal aortic arch or descending
aortic pathology requiring stent graft placement using the trans-
apical approach have been reported. In all patients heavily calci-
ified, stenotic or tortuous iliac arteries were reported as the reason
for choosing the transapical access. Our data adds to previous
experience, indicating the transapical approach to be a safe and
effective alternative to the femoral access. However, one has to
be aware that the transapical access comes at the price of at least
transient regional left ventricular dysfunction in about one-third
of patients [7].

There are several technical aspects of the procedure that need
to be discussed. Firstly the guidewire should be placed deep down
to the abdominal aorta to provide sufficient stability. It is of
particular importance to consider the reversed graft position.
With the antegrade approach the stent graft is deployed in a
reversed position, i.e. the bare springs of the graft are at the distal
end of the target pathology. This needs to be considered in order
To make sure that the distal part of an aneurysm is sufficiently
excluded from perfusion. Conversely, the proximal end of the
stent graft usually does not have bare springs and needs to be
placed carefully in order to avoid overstenting of the supra-aortic
vessels. Moreover, the stent is not designed for reversed position-
ing and the long term effects on the aortic wall need to be
observed closely. With this approach the aortic valve has to be
crossed. This may affect left-ventricular function and regularly
causes regurgitation. While this effect is limited with one wire
crossing the valve, it becomes relevant if the deployment
system of the stent graft crosses the aortic valve. In order to
minimize the duration of regurgitation, we did not place the
sheath across the valve and tried to keep the time of a large
volume device crossing the valve as short as possible. Neverthe-
less, monitoring of left-ventricular function may be required in
complex procedures. Moreover, aortic valve passage is associated
with a risk of stroke, independent of whether an antegrade or
retrograde approach is used [8]. In the case of aortic stenosis
and calcifications or vegetation of the valve, one has to be aware
of its role as a potential source of embolism. In such patients the
indication for transapical stent placement needs to be very strict.
Finally, the transapical approach requires multidisciplinary teams,
such as in our setting where cardiac surgeons and interventional
radiologists are working closely together. The effect of upcoming
apical closure devices, which are currently under investigation, on
these treatments remains to be seen [9].

The transapical approach for TEVAR is feasible and safe. It
should be considered as an alternative in patients with severe
aorto-iliac atherosclerotic disease and severe kinking of the access
vessels.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] Dake MD, Miller DC, Semba CP et al. Transluminal placement of endo-
vascular stent-grafts for the treatment of descending thoracic aortic
[3] Rahnavardi M, Santibanez J, Sian K et al. A systematic review of transa-
repair via the left ventricular apex of a beating heart. J Vasc Surg 2009;
49: 759–762
[5] Slater BJ, Harris EJ, Lee JT. Anatomic suitability of ruptured abdominal
722
[6] Grenon SM, MacDonald S, Sidhu RS et al. Successful ventricular transa-
pical thoracic endovascular graft deployment in a pig model. J Vasc Surg
2008; 48: 1301–1305
replacement on apical wall motion. J Am Soc Echocardiogr 2013; 26:
255–260
perative Stroke and Mortality in Transcatheter Aortic Valve Implantation.
Am J Cardiol 2016; 118: 1031–1045
[9] Ferrari E. Apical access and closure devices for transapical transcatheter
heart valve procedures. Swiss Med Wkly 2016; 146: DOI: w14237
93: 2063–2065
J Cardiothorac Surg 2013; 44: 559–562

Interventional Radiology

Mahnken AH et al. Initial Experience with... Fortschr Röntgenstr 2017; 189: 760–764