Diabetologie und Stoffwechsel 2017; 12(03): 213-221
DOI: 10.1055/s-0043-106192
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Proteomanalyse: Neue Wege zur verbesserten Behandlung der diabetischen Nephropathie

Proteome Analysis: New Approaches for Improved Treatment of Diabetic Nephropathy
Jens Drube
1   Klinik für Pädiatrische Nieren-, Leber- und Stoffwechselerkrankungen, Medizinische Hochschule Hannover Zentrum für Kinderheilkunde und Jugendmedizin, Hannover, Germany
,
Petra Zürbig
2   R&D, mosaiques diagnostics GmbH, Hannover, Deutschland
,
Joachim Beige
3   Abteilung Nephrologie, Klinikum St. George, Leipzig, Germany
4   Martin-Luther-Universität, Halle/Wittenberg, Germany
,
Harald Mischak
2   R&D, mosaiques diagnostics GmbH, Hannover, Deutschland
5   BHF Glasgow Cardiovascular Research Centre, University Glasgow, United Kingdom of Great Britain and Northern Ireland
,
Joachim Jankowski
6   Institut für Molekulare Herz-Kreislaufforschung, Universitätsklinikum RWTH Aachen, Germany
7   CARIM, Institut für kardiovaskuläre Erkrankungen, Universität Maastricht, Netherlands
› Author Affiliations
Further Information

Publication History

15 October 2016

15 March 2017

Publication Date:
07 April 2017 (online)

Zusammenfassung

Chronische Nierenerkrankungen sind gekennzeichnet durch einen langsam fortschreitenden Verlust der Nierenfunktion, der schließlich zum Nierenversagen führt. Betroffene Patienten benötigen im Endstadium eine Nierenersatztherapie in Form der Dialyse und/oder Nierentransplantation mit erheblichen Konsequenzen sowohl für Mortalität als auch für die Lebensqualität der Patienten. Da die Prävalenz des Diabetes kontinuierlich deutlich steigt, nimmt gegenwärtig die diabetische Nephropathie (DN) als Dialyseursache zahlenmäßig den höchsten Rang ein. Die individuelle Behandlung der DN sowie der resultierenden kardiovaskulären Komplikationen in der frühen und damit einer Therapie zugänglichen Erkrankungsphase ist derzeit deutlich erschwert, da es an einer effektiven, nichtinvasiven, validen Routinediagnostik dieser Patienten mangelt. Die derzeit verwendeten Marker Serum-Kreatinin/eGFR und Albumin im Urin sind geeignet, um die DN in späteren Stadien abzubilden, jedoch sind sie von geringer Aussagekraft in der Erkennung von frühen Stadien. Eine neue diagnostische Methode ist die Analyse des Proteoms, der Gesamtheit aller Proteine und Peptide. Die Proteomanalyse hat die Identifikation von 273 Biomarkern im Urin zur Diagnostik chronischer Nierenerkrankungen ermöglicht. Ein auf diesen Biomarkern beruhender Klassifikator, CKD273, ermöglicht eine im Verhältnis zu den derzeit verwendeten Biomarkern signifikant bessere Identifizierung der DN. Die Daten zeigen vor allem eine Verbesserung der Früherkennung und Prognostik. Dies ermöglicht eine frühzeitige und gezielte Therapie und damit eine wesentlich verbesserte Option den fortschreitenden Verlust der Nierenfunktion aufzuhalten.

Abstract

Chronic kidney diseases are characterized by a slow progressive loss of renal function leading to kidney failure. At end-stage renal disease, affected patients require renal replacement therapy, dialysis or kidney transplantation, with considerable consequences for mortality and quality of life of the patients. Since the prevalence of diabetes is increasing continuously in the general population, diabetic nephropathy is currently the number one cause of dialysis. The individual treatment of diabetic nephropathy and its resulting cardiovascular complications in the early and thus therapy-accessible phase of the disease is impeded by the lack of effective, non-invasive, valid routine diagnostic procedures for these patients. The currently used standard biomarkers serum creatinine/eGFR and urinary albumin are suitable to display DN in later stages, but they are of low significance in the detection of early stages. A new diagnostic method is based on the analysis of the proteome, the entirety of all proteins and peptides. Proteome analysis enabled the identification of 273 urinary biomarkers for the diagnosis of chronic renal disease. A classifier based on these biomarkers, CKD273, allows a significantly better identification of DN compared to the currently used biomarkers. The data specifically indicate an improvement in early diagnosis and prognosis. This allows an early and targeted therapy and therefore a significantly improved possibility to stop the progressive loss of renal function.

 
  • Literatur

  • 1 Afkarian M. Sachs MC. Kestenbaum B. et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 2013; 24: 302-308
  • 2 Saran R. Li Y. Robinson B. et al. US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 2016; 67: Svii, S1-Svii,305
  • 3 Pippias M. Jager KJ. Kramer A. et al. The changing trends and outcomes in renal replacement therapy: data from the ERA-EDTA Registry. Nephrol Dial Transplant 2016; 31: 831-841
  • 4 Liyanage T. Ninomiya T. Jha V. et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 2015; 385: 1975-1982
  • 5 KDOQI. Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am J Kidney Dis 2012; 60: 850-886
  • 6 Vora JP. Ibrahim HAA. Clinical manifestations and natural history of diabetic nephropathy. In: Johnson RJ. Feehally J. editors Comprehensive clinical nephrology. 2nd ed. Edinburgh: Mosby; 2003: 425-437
  • 7 de Boer I. Afkarian M. Rue TC. et al. Renal outcomes in patients with type 1 diabetes and macroalbuminuria. J Am Soc Nephrol 2014; 25: 2342-2350
  • 8 de Zeeuw D. Remuzzi G. Parving HH. et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 2004; 65: 2309-2320
  • 9 Heerspink HJ. Ninomiya T. Persson F. et al. Is a reduction in albuminuria associated with renal and cardiovascular protection? A post hoc analysis of the ALTITUDE trial. Diabetes Obes Metab 2016; 18: 169-177
  • 10 Ninomiya T. Perkovic V. de Galan BE. et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol 2009; 20: 1813-1821
  • 11 Viazzi F. Leoncini G. Conti N. et al. Microalbuminuria is a predictor of chronic renal insufficiency in patients without diabetes and with hypertension: the MAGIC study. Clin J Am Soc Nephrol 2010; 5: 1099-1106
  • 12 Stevens PE. Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013; 158: 825-830
  • 13 Naresh CN. Hayen A. Weening A. et al. Day-to-day variability in spot urine albumin-creatinine ratio. Am J Kidney Dis 2013; 62: 1095-1101
  • 14 MacIsaac RJ. Ekinci EI. Jerums G. Progressive diabetic nephropathy. How useful is microalbuminuria?: contra. Kidney Int 2014; 86: 50-57
  • 15 Fassett RG. Venuthurupalli SK. Gobe GC. et al. Biomarkers in chronic kidney disease: a review. Kidney Int 2011; 80: 806-821
  • 16 Kronenberg F. Emerging risk factors and markers of chronic kidney disease progression. Nat Rev Nephrol 2009; 5: 677-689
  • 17 Meguid EINA. Bello AK. Chronic kidney disease: the global challenge. Lancet 2005; 365: 331-340
  • 18 Nationale VersorgungsLeitlinie. Nierenerkrankungen bei Diabetes im Erwachsenenalter. 2015
  • 19 Catapano AL. Graham I. De BG. et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Developed with the special contribution of the European Assocciation for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 2016; 253: 281-344
  • 20 Ridker PM. Cook NR. Statins: new American guidelines for prevention of cardiovascular disease. Lancet 2013; 382: 1762-1765
  • 21 Susztak K. Bottinger EP. Diabetic nephropathy: a frontier for personalized medicine. J Am Soc Nephrol 2006; 17: 361-367
  • 22 Schievink B. Kropelin T. Mulder S. et al. Early renin-angiotensin system intervention is more beneficial than late intervention in delaying end-stage renal disease in patients with type 2 diabetes. Diabetes Obes Metab 2016; 18: 64-71
  • 23 Jankowski J. Schanstra JP. Mischak H. Body fluid peptide and protein signatures in diabetic kidney diseases. Nephrol Dial Transplant 2015; 30 (Suppl. 04) iv43-iv53
  • 24 Currie G. Delles C. Urinary Proteomics for Diagnosis and Monitoring of Diabetic Nephropathy. Curr Diab Rep 2016; 16: 104
  • 25 Mischak H. Pro: Urine proteomics as a liquid kidney biopsy: no more kidney punctures!. Nephrol Dial Transplant 2015; 30: 532-537
  • 26 Thongboonkerd V. Malasit P. Renal and urinary proteomics: current applications and challenges. Proteomics 2005; 5: 1033-1042
  • 27 Fliser D. Novak J. Thongboonkerd V. et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 2007; 18: 1057-1071
  • 28 Mischak H. Delles C. Vlahou A. et al. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol 2015; 11: 221-232
  • 29 Banks RE. Dunn MJ. Hochstrasser DF. et al. Proteomics: new perspectives, new biomedical opportunities. Lancet 2000; 356: 1749-1756
  • 30 Stein LD. Human genome: end of the beginning. Nature 2004; 431: 915-916
  • 31 Merchant ML. Perkins BA. Boratyn GM. et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol 2009; 20: 2065-2074
  • 32 Schlatzer D. Maahs DM. Chance MR. et al. Novel urinary protein biomarkers predicting the development of microalbuminuria and renal function decline in type 1 diabetes. Diabetes Care 2012; 35: 549-555
  • 33 Bhensdadia NM. Hunt KJ. Lopes-Virella MF. et al. Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes. Kidney Int 2013; 83: 1136-1143
  • 34 Good DM. Zürbig P. Argiles A. et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 2010; 9: 2424-2437
  • 35 Lindhardt M. Persson F. Currie G. et al. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial. BMJ Open 2016; 6: e010310
  • 36 Molin L. Seraglia R. Lapolla A. et al. A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. J Proteomics 2012; 75: 5888-5897
  • 37 Siwy J. Schanstra JP. Argiles A. et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant 2014; 29: 1563-1570
  • 38 Zürbig P. Jerums G. Hovind P. et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 2012; 61: 3304-3313
  • 39 Roscioni SS. de ZD. Hellemons ME. et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia 2012; 56: 259-267
  • 40 Lindhardt M. Persson F. Zürbig P. et al. Urinary Proteomics Predict Onset of Microalbuminuria in a Cohort of Normoalbuminuric Type 1 Diabetic Patients in the DIRECT 1 Study. Journal of the American Society of Nephrology: JASN 2012; 23: 41A
  • 41 Lindhardt M. Persson F. Zurbig P. et al. Urinary Proteomics Predict Onset of Microalbuminuria in Normoalbuminuric Type 2 Diabetic Patients, a sub-study of the DIRECT-Protect 2 Study. Nephrol Dial Transplant 2016 Epub ahead of print (gfw292)
  • 42 Schanstra JP. Zurbig P. Alkhalaf A. et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol 2015; 26: 1999-2010
  • 43 Pontillo C. Jacobs L. Staessen J. et al. A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol Dial Transplant 2016 Epub ahead of print (gfw239)
  • 44 Andersen S. Mischak H. Zürbig P. et al. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria. BMC Nephrol 2010; 11: 29
  • 45 Critselis E. Lambers HH. Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression. Nephrol Dial Transplant 2015; 31: 249-254
  • 46 Howick J. Chalmers I. Glasziou P. et al. The Oxford 2011 Levels of Evidence. 2014
  • 47 Mischak H. Vlahou A. Ioannidis JP. Technical aspects and inter-laboratory variability in native peptide profiling: The CE-MS experience. Clin Biochem 2013; 46: 432-443
  • 48 Rossing K. Mischak H. Parving HH. et al. Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int 2005; 68: 193-205
  • 49 Rossing K. Mischak H. Rossing P. et al. The urinary proteome in diabetes and diabetes-associated complications: new ways to assess disease progression and evaluate therapy. Proteomics Clin Appl 2008; 2: 997-1007
  • 50 Feldman DL. Jin L. Xuan H. et al. Effects of Aliskiren on Blood Pressure, Albuminuria, and (Pro)Renin Receptor Expression in Diabetic TG(mRen-2)27 Rats. Hypertension 2008; 52: 130-136
  • 51 Wang M. Zhang J. Telljohann R. et al. Chronic Matrix Metalloproteinase Inhibition Retards Age-Associated Arterial Proinflammation and Increase in Blood Pressure. Hypertension 2012; 60: 459-466
  • 52 Suzuki K. Souda S. Ikarashi T. et al. Renoprotective effects of low-dose valsartan in type 2 diabetic patients with diabetic nephropathy. Diabetes Res Clin Pract 2017; 57: 179-183
  • 53 Rossing K. Jacobsen P. Pietraszek L. et al. Renoprotective effects of adding angiotensin II receptor blocker to maximal recommended doses of ACE inhibitor in diabetic nephropathy: a randomized double-blind crossover trial. Diabetes Care 2003; 26: 2268-2274
  • 54 Brenner BM. Cooper ME. de ZD. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345: 861-869
  • 55 de Zeeuw D. Akizawa T. Audhya P. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 2013; 369: 2492-2503
  • 56 Agarwal S. Parashar A. Menon V. Meta-analysis of the cardiovascular outcomes with dipeptidyl peptidase 4 inhibitors: validation of the current FDA mandate. Am J Cardiovasc Drugs 2014; 14: 191-207
  • 57 Wanner C. Inzucchi SE. Lachin JM. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016; 375: 323-334
  • 58 Schievink B. de ZD. Parving HH. et al. The renal protective effect of angiotensin receptor blockers depends on intra-individual response variation in multiple risk markers. Br J Clin Pharmacol 2015; 80: 678-686
  • 59 Bahlmann F. Critselis E. Pontillo C. et al. Comparison of cost-effectiveness of the urinary based CKD273 biomarker panel and current clinical practices in the management of chronic kideny disease progression. Nephrol Dial Transplant 2015; 30: iii305
  • 60 Mischak H. Delles C. Klein J. et al. Urinary proteomics based on capillary electrophoresis-coupled mass spectrometry in kidney disease: discovery and validation of biomarkers, and clinical application. Adv Chronic Kidney Dis 2010; 17: 493-506
  • 61 FDA issues letter of support for urinary peptide-based biomarker to detect early stage of CKD. European Nephrology Portal 2016. Available from: http://www.enp-era-edta.org/#/news-details?newsId=21
  • 62 Biomarker Letter of Support. FDA 2016. Available from: http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM508790.pdf
  • 63 Bakris GL. Recognition, pathogenesis, and treatment of different stages of nephropathy in patients with type 2 diabetes mellitus. Mayo Clin Proc 2011; 86: 444-456
  • 64 Gaede P. Vedel P. Parving HH. et al. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 1999; 353: 617-622
  • 65 Kato S. Maruyama S. Makino H. et al. Anti-albuminuric effects of spironolactone in patients with type 2 diabetic nephropathy: a multicenter, randomized clinical trial. Clinical and Experimental Nephrology 2015; 19: 1098-1106
  • 66 Edwards NC. Steeds RP. Chue CD. et al. The safety and tolerability of spironolactone in patients with mild to moderate chronic kidney disease. Br J Clin Pharmacol 2011; 73: 447-454
  • 67 Knowler WC. Bahnson JL. Bantle JP. et al. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes & Endocrinology 2014; 2: 801-809
  • 68 Willingham F. The dietary management of patients with diabetes and renal disease: challenges and practicalities. J Ren Care 2012; 38: 40-51
  • 69 Siwy J. Zürbig P. Argiles A. et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant 2016 Epub ahead of print (gfw337)
  • 70 Ronco C. McCullough P. Anker SD. et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 2010; 31: 703-711
  • 71 Brown CE. McCarthy NS. Hughes AD. et al. Urinary proteomic biomarkers to predict cardiovascular events. Proteomics Clin Appl 2015; 9: 610-617
  • 72 Zhang ZY. Thijs L. Petit T. et al. Urinary Proteome and Systolic Blood Pressure as Predictors of 5-Year Cardiovascular and Cardiac Outcomes in a General Population. Hypertension 2015; 66: 52-60
  • 73 Mischak H. How to get proteomics to the clinic? Issues in clinical proteomics, exemplified by CE-MS. Proteomics Clin Appl 2012; 6: 437-442
  • 74 Argiles A. Siwy J. Duranton F. et al. CKD273, a New Proteomics Classifier Assessing CKD and Its Prognosis. PLoS One 2013; 8: e62837