Planta Med 2017; 83(09): 770-777
DOI: 10.1055/s-0043-101916
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

In Vitro and In Vivo Anti-inflammatory Effects of Struthanthus vulgaris

Franciane Martins Marques
1   Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha, Vila Velha, Brazil
,
Maycow Rodrigues da Costa
1   Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha, Vila Velha, Brazil
,
Cátia Vittorazzi
1   Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha, Vila Velha, Brazil
,
Luciane De Souza Dos Santos Gramma
1   Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha, Vila Velha, Brazil
,
Thiago Barth
2   Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, Brazil
,
Tadeu Uggere de Andrade
1   Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha, Vila Velha, Brazil
,
Denise Coutinho Endringer
1   Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha, Vila Velha, Brazil
,
Rodrigo Scherer
1   Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha, Vila Velha, Brazil
,
Marcio Fronza
1   Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha, Vila Velha, Brazil
› Author Affiliations
Further Information

Publication History

received 25 October 2016
revised 03 January 2017

accepted 15 January 2017

Publication Date:
30 January 2017 (online)

Abstract

Struthanthus vulgaris is probably the most common medicinal mistletoe plant in Brazil, and has been used in folk medicine as an anti-inflammatory agent and for cleaning skin wounds. Our proposal was to evaluate the anti-inflammatory activity of S. vulgaris ethanol leaf extract and provide further insights of how this biological action could be explained using in vitro and in vivo assays. In vitro anti-inflammatory activity was preliminarily investigated in lipopolysaccharide/interferon gamma-stimulated macrophages based on their ability to inhibit nitric oxide production and tumor necrosis factor-alpha. In vivo anti-inflammatory activity of S. vulgaris ethanol leaf extract was investigated in the mice carrageenan-induced inflammation air pouch model. The air pouches were inoculated with carrageenan and then treated with 50 and 100 mg/kg of S. vulgaris ethanol leaf extract or 1 mg/kg of dexamethasone. Effects on the immune cell infiltrates, pro- and anti-inflammatory mediators such as tumor necrosis factor-alpha, interleukin 1, interleukin 10, and nitric oxide, were evaluated. The chemical composition of S. vulgaris ethanol leaf extract was characterized by LC-MS/MS. In vitro S. vulgaris ethanol leaf extract significantly decreased the production of nitric oxide and tumor necrosis factor-alpha in macrophages and did not reveal any cytotoxicity. In vivo, S. vulgaris ethanol leaf extract significantly suppressed the influx of leukocytes, mainly neutrophils, protein exudation, nitric oxide, tumor necrosis factor-alpha, and interleukin 1 concentrations in the carrageenan-induced inflammation air pouch. In conclusion, S. vulgaris ethanol leaf extract exhibited prominent anti-inflammatory effects, thereby endorsing its usefulness as a medicinal therapy against inflammatory diseases, and suggesting that S. vulgaris ethanol leaf extract may be a source for the discovery of novel anti-inflammatory agents.

 
  • References

  • 1 Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell 2010; 140: 771-776
  • 2 Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013; 13: 159-175
  • 3 Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 2016; 15: 551-567
  • 4 Lichtenstein DR, Syngal S, Wolfe MM. Nonsteroidal anti-inflammatory drugs and the gastrointestinal tract. The double-edged sword. Arthritis Rheum 1995; 38: 5-18
  • 5 Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. J Am Med Assoc 2001; 286: 954-959
  • 6 McKellar G, Madhok R, Singh R. The problem with NSAIDs: what data to believe?. Curr Pain Headache Rep 2007; 11: 423-427
  • 7 Leitão F, Leitão SG, de Almeida MZ, Cantos J, Coelho T, da Silva PE. Medicinal plants from open-air markets in the State of Rio de Janeiro, Brazil as a potential source of new antimycobacterial agents. J Ethnopharmacol 2013; 149: 513-521
  • 8 Vieira OMC, Santos MH, Silva GA, Siqueira AM. Atividade antimicrobiana de Struthanthus vulgaris (erva-de-passarinho). Rev Bras Farmacogn 2005; 15: 149-154
  • 9 Da Conceição GM, Ruggieri AC, Barbosa FC, Araujo MFV, da Conceição TTMM, da Conceição MAMM. Erva-de-passarinho: substratos vegetais, uso e aplicações na medicina popular, Caxias, Maranhão. Rev Sci Plen 2010; 6: 1-5
  • 10 Vittorazzi C, Endringer DC, Andrade TU, Scherer R, Fronza M. Antioxidant, antimicrobial and wound healing properties of Struthanthus vulgaris . Pharm Biol 2016; 54: 331-337
  • 11 Salatino A, Kraus JE, Salatino MLF. Contents of tannins and their histological localization in young and adult parts of Struthanthus vulgaris Mart. (Loranthaceae). Ann Bot 1993; 72: 409-414
  • 12 Dos Santos Gramma LS, Marques FM, Vittorazzi C, de Andrade TA, Frade MA, de Andrade TA, Endringer DC, Scherer R, Fronza M. Struthanthus vulgaris ointment prevents an over expression of inflammatory response and accelerates the cutaneous wound healing. J Ethnopharmacol 2016; 22: 319-327
  • 13 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79: 629-661
  • 14 Kim HS, Quon MJ, Kim JA. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2014; 10: 187-195
  • 15 Ippoushi K, Azuma K, Ito H, Horie H, Higashio H. [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci 2003; 73: 3427-3437
  • 16 Suzuki C, Aoki-Yoshida A, Kimoto-Nira H, Kobayashi M, Sasaki K, Mizumachi K. Effects of strains of Lactococcus lactis on the production of nitric oxide and cytokines in murine macrophages. Inflammation 2014; 37: 1728-1737
  • 17 Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol 2001; 1: 1397-1406
  • 18 Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003; 3: 745-756
  • 19 Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signaling: live or let die. Nat Rev Immunol 2015; 15: 362-374
  • 20 Zhao F, Wang L, Liu K. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J Ethnopharmacol 2009; 122: 457-462
  • 21 Abdelwahab SI, Hassan LE, Sirat HM, Yagi SM, Koko WS, Mohan S, Taha MM, Ahmad S, Chuen CS, Narrima P, Rais MM, Hadi AH. Anti-inflammatory activities of cucurbitacin E isolated from Citrullus lanatus var. citroides: role of reactive nitrogen species and cyclooxygenase enzyme inhibition. Fitoterapia 2011; 82: 1190-1197
  • 22 Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci 1997; 1: 12-26
  • 23 Zhu ZW, Li J, Gao XM, Amponsem E, Kang LY, Hu LM, Zhang BL, Chang YX. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC-MS/MS. J Pharm Biomed Anal 2012; 62: 162-166
  • 24 Duarte DB, Vasko MR, Fehrenbacher JC. Models of inflammation: carrageenan air pouch. Curr Protoc Pharmacol 2016; 72: 5.6.1-5.6.9
  • 25 Fronza M, Muhr C, da Silveira DS, Sorgi CA, Rodrigues SF, Farsky SH, Paula-Silva FW, Merfort I, Faccioli LH. Hyaluronidase decreases neutrophils infiltration to the inflammatory site. Inflamm Res 2016; 65: 533-542
  • 26 Shin S, Jeon JH, Park D, Jang JY, Joo SS, Hwang BY, Choe SY, Kim YB. Anti-inflammatory effects of an ethanol extract of Angelica gigas in a Carrageenan-air pouch inflammation model. Exp Anim 2009; 58: 431-436
  • 27 Kim D, Park D, Kyung J, Yang YH, Choi EK, Lee YB, Kim HK, Hwang BY, Kim YB. Anti-inflammatory effects of Houttuynia cordata supercritical extract in carrageenan-air pouch inflammation model. Lab Anim Res 2012; 28: 137-140
  • 28 Silva RR, Oliveira e Silva D, Fontes HR, Alviano CS, Fernandes PD, Alviano DS. Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica . BMC Complement Altern Med 2013; 13: 107
  • 29 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254
  • 30 Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982; 126: 131-138