Deutsche Zeitschrift für Onkologie 2017; 49(01): 20-27
DOI: 10.1055/s-0043-101090
Forschung
© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Onkogenes Schlüsselsignal RANTES/CCL5 – „Cytokine Cross Talk“ des Tumors und „Silent Inflammation“ des Kieferknochens

Oncogenetic Key Signal RANTES/CCL5 – „Cytokine Cross Talk“ in Tumors and Silent Inflammation of Jawbone
Johann Lechner
1   Praxisklinik Ganzheitliche ZahnMedizin, München
,
Volker von Baehr
2   Abteilung für Immunologie und Allergologie im Institut für Medizinische Diagnostik (IMD), Berlin. www.imd-berlin.de
› Author Affiliations
Further Information

Publication History

Publication Date:
02 May 2017 (online)

Zusammenfassung

Hintergrund Trotz erheblicher therapeutischer Fortschritte sind die meisten malignen Erkrankungen unheilbar geblieben. Gleichzeitig nimmt die Bedeutung der Mikroumgebung, die die Tumorzellen mit „Silent Inflammation“ umgibt, zu. Zielsetzung: Um den Verdacht auf tumorrelevante inflammatorischen Zytokin-Quellen in fettig-degenerativ veränderten Osteolysen/Osteonekrosen des Kieferknochens (FDOK) zu überprüfen, untersuchen wir diese auffällig veränderten Areale auf Zytokin-Muster.

Material und Methoden Bei insgesamt 38 Tumorpatienten untersuchen wir Gewebeproben aus FDOK auf ihren Gehalt an Zytokinen mittels bead-basierter Luminex®-Analyse.

Ergebnisse Auffallend ist der isoliert hohe Gehalt an Chemokin RANTES/CCL5 (R/C) in allen FDOK-Gewebeproben. Ein Fall zeichnet sich durch hohe R/C-Spiegel in der FDOK-Probe und gleichzeitigen Metastasen eines Adenokarzinoms der Brust (MaCa) aus. Die R/C Expression in den 38 FDOK-Proben der Tumorpatienten liegt im Mittel beim 35-fachen gegenüber gesundem Kieferknochen.

Diskussion R/C greift auf mehreren Stufen in Immunreaktionen ein und wird in der wissenschaftlichen Literatur bei vielen Tumoren und insbesondere bei MaCa und dessen Metastasierung als pathogenetische Schlüsselstelle angesehen. R/C ist damit an onkogenen Entwicklungen beteiligt.

Schlussfolgerung Die Autoren schließen aus den Daten der FDOK-Analyse, dass diese Areale hyperaktivierte Signaltransduktionskaskaden des Chemokins R/C exprimieren, die pathogenetische Autoimmunprozesse bei vielen Tumoren und insbesondere beim MaCa und dessen Metastasierung induzieren können. Verbindet man die in der Literatur dargestellte R/C- und CCR5-Signalinduktion bei Tumoren und die von uns erhobenen Daten, kann vorgeschlagen werden, FDOK in ein integratives Therapiekonzept bei Tumoren und möglicherweise auch bei MaCa einzubeziehen.

ABSTRACT

Background Despite significant therapeutic advances most malignancies, as well as adenocarcinomas of the breast, remained incurable. At the same time, the importance of the microenvironment surrounding the tumor cells with “silent inflammation” increases.

Objective To check the suspected tumor-relevant inflammatory cytokine sources in fatty-degenerative osteonecrotic jawbone (FDOJ), we analyze these conspicuously altered jawbone areas to assess the expression and quantification of cytokine expression.

Material and Method In 38 tumor patients we determine the levels of cytokines by bead-based Luminex® analysis in samples of FDOJ.

Results Striking is the high content of chemokine RANTES/CCL5 (R/C) in all 38 tissue samples. A single case is characterized by high R/C levels in FDOJ sample and simultaneously by metastasizing cells inside the FDOJ sample. The R/C expression in all 38 FDOJ samples is on average at 35 fold higher compared to healthy jawbone.

Discussion R/C interacts on several levels in immune responses and is considered in scientific literature as pathogenetic key point in tumor growth. The study supports a potential mechanism where FDOJ is a mediating link specifically in breast cancer (MaCa) and its metastasis. R/C is thus involved intensively in oncogenic propulsion progress developments.

Conclusion The authors conclude from the data of FDOJ analysis that these areas express hyperactivated signal transduction of the chemokine R/C, induce pathogenetic autoimmune processes in tumors, MaCa and its metastasis and serve as a possible cause. Combining the R/C signal induction of tumors and the information we collect illustrated, it may be suggested to involve FDOJ in an integrative therapy concept for tumor therapy.

 
  • Literatur

  • 1 Aldinucci D, Colombatt A. The Inflammatory Chemokine CCL5 and Cancer Progression. Mediators Inflamm 2014; Article ID 292376 DOI: org/10.1155/2014/292376.
  • 2 Aldinucci D, Gloghini A, Pinto A, Colombatti A, Carbone A. The role of CD40/CD40L and interferon regulatory factor 4 in Hodgkin lymphoma microenvironment. Leukemia and Lymphoma 2012; 53: 195-201
  • 3 Aldinucci D, Gloghini A, Pinto A, de Filippi R, Carbone A. The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol 2010; 221: 248-263
  • 4 Allavena P, Germano G, Marchesi F, Mantovani A. Chemokines in cancer related inflammation. Exp Cell Res 2011; 317: 664-673
  • 5 Appay V, Rowland-Jones SL. RANTES: A versatile and controversial chemokine. Trends Immunol 2001; 22: 83-87
  • 6 Arima K, Nasu K, Narahara H, Fujisawa K, Matsui N, Miyakawa I. Effects of lipopolysaccharide and cytokine on production of RANTES by cultured human endometrial stromal cells. Mol Hum Reprod 2000; 6: 246-251
  • 7 Azenshtein E, Luboshits G, Shina S. et al. The CC chemokine RANTES in breast carcinoma progression: Regulation of expression and potential mechanisms of promalignant activity. Cancer Res 2002; 62: 1093-1102
  • 8 Balkwill FR. The chemokine system and cancer. J Pathol 2012; 226: 148-157
  • 9 Ben-Baruch A. The tumor-promoting flow of cells into, within and out of the tumor site: Regulation by the inflammatory axis of TNF and chemokines. Cancer Microenviron 2012; 5: 151-164
  • 10 Bieche I, Lerebours F, Tozlu S, Espie M, Marty M, Lidereau R. Molecular profiling of inflammatory breast cancer: Identification of a poor-prognosis gene expression signature. Clin Cancer Res 2004; 10: 6789-6795
  • 11 Bouquot J, Martin W, Wrobleski G. Computer-based thru-transmission sonography (CTS) imaging of ischemic osteonecrosis of the jaws – A preliminary investigation of 6 cadaver jaws and 15 pain patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 2001; 92: 550
  • 12 Bouquot J, Shankland W, Margolis M. Through-transmisison alveolar ultrasonography (TAU) B new technology for evaluation of bone density and desiccation. Comparison with radiology of 170 biopsied alveolar sites of osteoporitic and ischemic damage. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 93: 413-414
  • 13 Cambien B, Richard-Fiardo P, Karimdjee BF, Martini V, Ferrua B. et al. CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRβ in colorectal carcinoma. PLoS ONE 2011; 6: e28842
  • 14 Candido J, Hagemann T. Cancer-related inflammation. J Clin Immunol 2013; 33 (Suppl. 01) 79-84
  • 15 Chang L-Y, Lin Y-C, Mahalingam J. et al. Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8+ T cells in colon cancer by T-regulatory cells. Cancer Res 2012; 72: 1092-1102
  • 16 Chenoweth MJ, Mian MF, Barra NG. et al. IL-15 can signal via IL-15Rα, JNK, and NF-κB to drive RANTES production by myeloid cells. J Immunol 2012; 188: 4149-4157
  • 17 Comoglio PM, Trusolino L. Cancer: The matrix is now in control. Nat Med 2005; 11: 1156-1159
  • 18 Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opinion Pharmacol 2013; 13: 595-601
  • 19 Coussens L, Fingleton B, Matrisan LM. Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 2002; 295: 2387-2392
  • 20 Dehqanzada ZA, Storrer CE, Hueman MT. et al. Assessing serum cytokine profiles in breast cancer patients receiving a HER2/neu vaccine using Luminex technology. Oncol Rep 2007; 17: 687-694
  • 21 Elsawa SF. et al. Comprehensive analysis of tumor microenvironment cytokines in Waldenstrom macroglobulinemia identifies CCL5 as a novel modulator of IL-6 activity. Blood 2011; 118: 5540-5549
  • 22 Elsawa SF. et al. GLI2 transcription factor mediates cytokine cross-talk in the tumor microenvironment. J Biol Chem 2011; 286: 21524-21534
  • 23 Ergen AV, Boles NC, Goodell MA. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 2012; 119: 2500-2509
  • 24 Hanahan D. et al. Hallmarks of cancer: The next generation. Cell 2011; 144: 646-674
  • 25 Hanahan D, Coussens LM. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309-322
  • 26 Harlin H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 2009; 69: 3077-3085
  • 27 Hornung D, Ryan IP, Chao VA, Vigne JL, Schriock ED, Taylor RN. Immunolocalization and regulation of the chemokine RANTES in human endometrial and endometriosis tissues and cells. J Clin Endocrinol Metab 1997; 82: 1621-1628
  • 28 Jain RK. Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol 2013; 31: 2205-2218
  • 29 Karnoub AE, Dash AB, Vo AP. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557-563
  • 30 Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013; 13: 525-541
  • 31 Lechner J, Bouquot JE, von Baehr V. Histologie und Immunologie der kavitätenbildenen Osteolysen des Kieferknochens. München: Eigenverlag; 2015. ISBN: 978-3-931351-4
  • 32 Lechner J, von Baehr V. Hyperaktivierte Signaltransduktionskaskaden des Chemokins RANTES/CCL5 in Osteopathien des Kieferknochens beim Mammakarzinom. Dtsch Z Onkol 2013; 45: 105-111
  • 33 Lechner J, von Baehr V. Hyperactivated signaling pathways of chemokine RANTES/CCL5 in osteopathies of jawbone in breast cancer patients – Case report and research. Breast Cancer (Auckl) 2014; 8: 89-96
  • 34 Lin S, Wan S, Sun L. et al. Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote cancer cell migration under hypoxia. Cancer Sci 2012; 103: 904-912
  • 35 Luboshits G, Shina S, Kaplan O. et al. Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 1999; 59: 4681-4687
  • 36 Lv D, Zhang Y, Kim HJ, Zhang L, Ma X. CCL5 as a potential immunotherapeutic target in triple-negative breast cancer. Cell Mol Immunol 2013; 10: 303-310
  • 37 Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med 2010; 10: 369-373
  • 38 Meadows SA, Vega F, Kashishian A. et al. PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 2012; 119: 1897-1900
  • 39 Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbotq LJ, Kuo PC. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 2011; 32: 477-487
  • 40 Mrowietz U. et al. The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice. Br J Cancer 1999; 79: 1025-1031
  • 41 Niwa Y, Akamatsu H, Niwa H, Sumi H, Ozaki Y, Abe A. Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 2001; 7: 285-289
  • 42 Oppermann M. Chemokine receptor CCR5: Insights into structure, function, and regulation. Cell Signal 2004; 16: 1201-1210
  • 43 Roscic-Mrkic B, Fischer M, Leemann C. et al. RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 2003; 102: 1169-1177
  • 44 Schlecker E, Stojanovic A, Eisen C. et al. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol 2012; 189: 5602-5611
  • 45 Smeets A, Brouwers B, Hatse S et al. Circulating CCL5 levels in patients with breast cancer: is there a correlation with lymph node metastasis? ISRN Immunology 2013 (2013), Article ID 453561, 5 pages
  • 46 Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 2008; 267: 271-285
  • 47 Swamydas M, Ricci K, Rego SL, Dreau D. Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases. Cell Adh Migr 2013; 7: 315-324
  • 48 Udi J, Schuler J, Wider D. et al. Potent in vitro and in vivo activity of sorafenib in multiple myeloma: induction of cell death, CD138-downregulation and inhibition of migration through actin depolymerization. Br J Haematol 2013; 161: 104-116
  • 49 Vaday GG, Peehl DM, Kadam PA, Lawrence DM. Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 2006; 66: 124-134
  • 50 Velasco-Velazquez M, Jiao X, de la Fuente M. et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res 2012; 72: 3839-3850
  • 51 World Cancer Reports. Edited by Stewart BW, Wild CP. Lyon: IARC; ISBN-13 978-92-832-0429-9
  • 52 Yaal-Hahoshen N, Shina S, Leider-Trejo L. et al. The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clin Cancer Res 2006; 12: 4474-4480
  • 53 Yang X, Hou J, Han Z. et al. One cell, multiple roles: Contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell Biosci 2013; 3: 5 10.1186/2045-3701-3-5
  • 54 Yi EH, Lee CS, Lee JK. et al. STAT3-RANTES autocrine signaling is essential for tamoxifen resistance in human breast cancer cells. Mol Cancer Res 2013; 11: 31-42
  • 55 Zhang Y, Lv D, Kim HJ. et al. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells. Cell Res 2013; 23: 394-408
  • 56 Zhang Y, Yao F, Yao X. et al. Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24- phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression. Oncol Rep 2009; 21: 1113-1120
  • 57 Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity 2012; 36: 705-716