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During the last three decades, the liver field has been
questioning “liver progenitor cell (LPC)” features and the
plasticity of the two liver epithelial cell compartments,
hepatocytes and biliary epithelial cells (BECs), for their
therapeutic ability to regenerate the liver. The term “LPC”
is used here to describe cells that have the potential to
differentiate into hepatocytes and BECs and that usually
express markers from both epithelial compartments. Early
developmental studies undoubtedly support the existence of
a common fetal precursor of BECs and hepatocytes, the
hepatoblast. Although there is no evidence for a direct
relationship between fetal hepatoblasts and adult LPCs, a
growing literature reports some functional and phenotypic
similarities between them.1 Both can self-renew and differ-
entiate into hepatocytes and BECs, and they both share cell
surface markers.2–11 Given this critical question, it is not
surprising to notice that studies on BEC-to-hepatocyte or
hepatocyte-to-BEC conversion have garnered increased at-

tention in the liver field. Yet, outstanding questions remain
unanswered such as the following (►Fig. 1): (1) Are there
some resident LPCs (►Fig. 1A) that have a potential to
proliferate and differentiate into both BECs and hepatocytes?
If so, as identified in intrahepatic small hepatic bile ductules
(hepatic stem/progenitor cells, HpSCs) or large intra- and
extra-hepatic bile ducts (biliary tree stem/progenitor cells,
BTSCs),12 are they phenotypically distinct from BECs and can
we identify them with specific markers? (2) LPCs may be
instead facultative (►Fig. 1B) as they emerge only after liver
injury. In this scenario, mature hepatocytes or BECs dediffer-
entiate into LPCs, reminiscent of fetal hepatoblasts. This
process is succeeded by the proliferation of facultative
LPCs and differentiation into themature cell type in demand,
hepatocytes when the hepatocyte pool is damaged or lost, or
BECs in cholangiopathies. Yet, again, one can question
whether all hepatocytes or BECs possess this capability.
(3) Another possibility is that the mature parenchymal cells,

Fig. 1 Mechanisms of hepatobiliary plasticity. Mature hepatocytes and BECs are known to divide to overcome minor injuries (no plasticity, left
panel); however, when injuries are chronic or more severe, plasticity of the hepatobiliary compartment is observed (plasticity, right panel).
In this case, various options have been proposed: (A) Resident LPCs self-renew and differentiate into both hepatocytes and BECs, (B) Facultative
LPCs emerge following liver injury, self-renew and differentiate as the resident LPCs do, and (C) mature hepatocytes and BECs transdifferentiate
into each other without transitioning through a LPC stage. BECs, biliary epithelial cells; LPC, liver progenitor cell.
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Abstract The liver field has been debating for decades the contribution of the plasticity of the
two epithelial compartments in the liver, hepatocytes and biliary epithelial cells (BECs),
to derive each other as a repair mechanism. The hepatobiliary plasticity has been first
observed in diseased human livers by the presence of biphenotypic cells expressing
hepatocyte and BEC markers within bile ducts and regenerative nodules or budding
from strings of proliferative BECs in septa. These observations are not surprising as
hepatocytes and BECs derive from a common fetal progenitor, the hepatoblast, and, as
such, they are expected to compensate for each other’s loss in adults. To investigate the
cell origin of regenerated cell compartments and associated molecular mechanisms,
numerous murine and zebrafish models with ability to trace cell fates have been
extensively developed. This short review summarizes the clinical and preclinical studies
illustrating the hepatobiliary plasticity and its potential therapeutic application.
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hepatocytes and BECs, exhibit cell plasticity to directly give
rise to each other by transdifferentiation (►Fig. 1C) without
transitioning into an intermediate LPC stage. Studies inves-
tigating adult liver regeneration in animal models as well as
evidence from analyses of human diseased liver specimens
may support one theory or the other; however, a careful
assessment of the literature as well as continuous investiga-
tions will help reach some consensuses. In this short review,
we have specifically focused our attention on the facultative
LPCs, summarized clinical and preclinical studies to identify
potential explanations of regenerative mechanisms in adult
livers, and recognized gaps in the field that are limiting the
therapeutic application of hepatobiliary plasticity to treat
liver diseases. In an attempt to address some of these
questions, we focus on the evidence of cell plasticity of
hepatocytes and BECs in human liver diseases in the first
section and compare them to animal study findings in
the second and third sections to finally discuss the possible
modulations of hepatobiliary plasticity as a therapeutic
intervention and their limitations in the last two sections.

Evidence of Hepatobiliary Plasticity in
Humans

The process of ductular reactions (DRs), which involves the
expansionofBECs, is ahallmarkofall chronic andacutehuman
liver diseases.13–23 This suggests an alternative BEC-driven
liver regeneration to overcome an exhausted hepatocyte-
driven repair, by which BECs proliferate and contribute to
hepatocytes. The observation of hepatocytes expressing the
BEC marker EpCAM within highly proliferative DR areas in
advanced human cirrhotic livers24 and that of hepatocyte-like
cells expressing thecentralveinhepatocyticmarker glutamine
synthetase budding from BECs within the DRs25–29 could
represent the contribution of BECs to de novo hepatocytes.
Further evidence is illustrated by the detection of “bi-pheno-
typic cells”30or “ductular hepatocytes”31 that express both the
hepatocytemarker HNF4a30 orHepPar131 and the BECmarker
KRT19. Human cirrhotic liver samples frequently harbor in-
termediate hepatocyte-like cells with morphology and size
intermediate between hepatocytes and BECs.32 Specifically, in
human cirrhotic livers, quantification of immature hepato-
cytes with glutamine synthetase positivity budding from
KRT19þ BECs demonstrated that they represented up to 70%
of hepatocytes within the septa.25 It has been suggested that
glutamine synthetase re-expression away from the central
vein areas is linked to a repair process, as a recent study
demonstrated that aberrant glutamine synthetase positivity
adjacent to portal tracts is associated with regressed cirrhosis
in humans.33 Lin and colleagues attempted to lineage trace
LPCs among the DRs in human cirrhotic liver34,35 using
mutational analysis in mitochondrial DNA encoding cyto-
chrome c oxidase enzyme, demonstrating that hepatocytes
within monoclonal regenerative nodules descend from adja-
cent LPC-associated DRs. This study supported the differentia-
tion potential of BECs in humans, suggesting the clinical
application of LPC-derived hepatocytes in resolving human
cirrhosis.

As in disorders of hepatocyte degeneration, biliary de-
generative diseases are also associated with prominent DRs
along with occurrence of intermediate hepatobiliary cells
(IHBCs).12 Cholangiopathies are associated with genetic- or
immune-mediated damage to the intrahepatic or extrahe-
patic biliary tree, fibrotic response, and subsequent liver
damage. The need to replace deteriorating BECs that are
impaired in their proliferative capabilities by chronic dam-
age elicits an alternative regenerative mechanism facilitated
by hepatocyte plasticity. Many histopathological examina-
tions have reported the expression of the BECmarker KRT7 in
hepatocytes during cholangiopathies.36–42 In cases of Ala-
gille syndrome as well as biliary atresia, the number of IHBCs
co-expressing the BEC markers KRT7 or HNF6 and the
hepatocyte markers LKM-1, BSEP, or HNF4a is significantly
increased.43 In both primary biliary cholangitis (PBC) and
primary sclerosing cholangitis (PSC), the appearance of
IHBCs increases with the stage of fibrotic damage to the
tissue.39,44,45 A significant number of hepatocytes express
the BEC transcription factor FOXA2 in the late stage of PBC
and biliary obstruction.46However, the DR phenotype in PSC
differs from that in PBC.44 In cirrhotic PSC, there are lesser
reactive ductules due to their lower proliferative index, but
more EpCAMþ/Hep-Par1þ newly derived hepatocytes.44 It
seems, since BECs in biliary cholangiopathies often show
senescent phenotypes47–52 and lower proliferative in-
dex,44,46 the transition of hepatocytes into BEC-like cells or
IHBCs could be a way to compensate for deteriorating biliary
function. The prominent expression of OV6, known to char-
acterize ductal plates, bile ducts, and ductules in fetal tissue,
in periseptal hepatocytes in the liver of biliary atresia
patients,53 as observed in the liver of PBC and PSC patients,54

further supports hepatocyte metaplasia,55 transitioning
from a mature cell to an immature LPC stage in
cholangiopathies.

The clinical studies illustrate both cell plasticity process-
es: hepatocytes give rise to BECs when the BEC compartment
is compromised, and BECs give rise to hepatocytes when
hepatocyte proliferation is exhausted. However, given the
lackof lineage tracing strategy in humans, the question of the
true identity of the origin of the progeny still stands. Recent
studies using lineage tracing animal models have proven to
be instrumental to specifically identify the contribution of
hepatocytes and BECs to each other’s compartments during
various liver diseases.

BEC-to-Hepatocyte Conversion in Animal
Models

Rodents
BEC-to-hepatocyte conversion was first examined in rats
followed by mice and zebrafish. In the Solt-Farber protocol,
2-acetylaminofluorene (2-AAF) is given to rats 1week before
partial hepatectomy (PHx); PHx stimulates liver regenera-
tion and 2-AAF suppresses hepatocyte proliferation, thereby
permitting BECs to contribute to hepatocytes.56,57 Following
the PHx, LPCs expressing BEC markers and the fetal marker
AFP appeared in the portal regions and expanded.
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Subsequently, they lost BEC features and acquired hepato-
cyte features,56 suggesting BEC-to-hepatocyte conversion.
Given the lack of lineage tracing tools in rats, mice have
been extensively used to prove BEC-to-hepatocyte conver-
sion. Using both BEC- and hepatocyte-specific lineage tracing
approaches (►Table 1), it was initially reported that in mice,
BECs barely contribute to hepatocytes during homeostasis
and even in diverse liver injury models, including CCl4, DDC,
and CDE.58–66 This minimal contribution of BECs to hepato-
cytes raised skepticism about the significance of BEC-to-
hepatocyte conversion in liver regeneration. Given the dif-
ference in the proliferation capacity of hepatocytes between
the rat Solt-Farber model, in which hepatocyte proliferation
was blocked, and the commonly used mouse liver injury
models, novel mouse models were established in which
hepatocyte proliferation was suppressed either by deleting
Mdm2,67 β1-integrin,68 or β-catenin69 or by overexpressing
p2168 in hepatocytes. These improved models revealed a
significant contribution of BECs to hepatocytes ranging from
15 to 70%, depending on the use of either direct BEC- or
indirect hepatocyte-lineage tracing mouse models. In addi-
tion to these genetic blocks of hepatocyte proliferation, long-
term liver injury with 6- or 12-month administrations of
DDC or thioacetamide (TAA), leading to natural impairment
of hepatocyte proliferation, also induced a significant BEC-to-
hepatocyte conversion.30 These lineage tracing studies have
been instrumental to demonstrate the potential of BECs to
generate healthy de novo hepatocytes when hepatocyte
proliferation is compromised, reflecting most human chron-
ic liver diseases.32,70–75 However, very few studies have
started to elucidate the molecular mechanisms underlying
BEC-to-hepatocyte conversion. The Notch–IGF1 axis76 and
Tet177 have been reported to control LPC proliferation
during the conversion, thereby affecting the number of
BEC-derived hepatocytes. We recently showed that vascular
endothelial growth factor A (VEGFA) delivered to the liver
via nucleoside-modified mRNA encapsulated into lipid
nanoparticles78 induced a fivefold increase in BEC-to-hepa-
tocyte conversion using tamoxifen-inducible KRT19 and
VEGFA receptor KDR lineage mouse models during acute
and chronic liver injuries (unpublished data, Rizvi and
Gouon-Evans, in preparation). VEGFA-mediated cell conver-
sion may be mediated through the activation of a VEGFA
receptor KDR expressed on a subset of BECs after liver injury
(unpublished data, Rizvi and Gouon-Evans, in preparation).
Further investigation is needed to understand the molecu-
lar mechanisms driving the cell conversion and to leverage
them for therapeutic intervention.

Zebrafish
Given the strengths of zebrafish as a vertebrate model
organism, including (1) rapid and external embryogenesis,
(2) an easy drug administration, (3) a large number of
progenies, and (4) a low maintenance cost, and similar
cellular compositions in the liver between zebrafish and
mammals albeit a difference between the two in the mode
of connection between hepatocytes and bile ductules,79,80

zebrafish have been widely used for investigating liver dis-

eases and for liver toxicology tests.81–95 A decade ago, three
groups independently developed a hepatocyte ablationmod-
el by generating the Tg(fabp10a:NTR) fish lines that express
bacterial nitroreductase (NTR) specifically in hepato-
cytes.91,96,97 Since NTR converts metronidazole (MTZ) into
a cytotoxic drug, MTZ treatment ablates nearly all hepato-
cytes in Tg(fabp10a:NTR) fish. Following MTZ washout, the
liver robustly and synchronously among animals regenerates
through BEC-to-hepatocyte conversion. This liver regenera-
tion occurs through four steps: (1) BEC-to-LPC dedifferentia-
tion, (2) LPC proliferation, (3) LPC-to-hepatocyte
differentiation, and (4) hepatocyte proliferation and matu-
ration.96,97 In this model, LPCs are distinguished from BECs
based on cell and nuclear shape and the expression of
hepatocyte markers. Given the synchrony and robustness
of BEC-driven liver regeneration in this ablation model
combined with the general strengths of zebrafish as a
vertebrate model organism, the ablation model has been
actively used to reveal the molecular mechanisms underly-
ing BEC-to-hepatocyte conversion. It was revealed using the
zebrafish model that Notch signaling,96 bromodomain and
extraterminal (BET) proteins,98 Dnmt1,99 and mTORC1100

regulate the first step of the conversion process, BEC-to-
LPC dedifferentiation. It was also revealed that the second
step, LPC proliferation, is positively regulated by BET pro-
teins,98 Tel2,101 and Stat3102 and negatively regulated by
Notch91 and FXR103 signaling. Specifically, FXR activation did
not only suppress LPC proliferation but also induced its
death.103 Given the correlation between LPC number and
the severity of human liver diseases21,104 and the potential of
regenerative therapy to promote LPC-to-hepatocyte differ-
entiation in the diseased livers, the third step, LPC-to-hepa-
tocyte differentiation, was more extensively investigated
using the zebrafish model than the other steps. It was
revealed that BMP signaling105 and Tel2101 positively regu-
late the third step through Tbx2b andHhex, respectively, and
that Notch signaling negatively regulates the step.91,96 Epi-
genetic regulators, Hdac1106 and Dnmt1,99 also positively
control LPC-to-hepatocyte differentiation by repressing
sox9b and tp53 expression, respectively. p53 inhibits the
differentiation by suppressing BMP signaling.99 It was also
reported that FXR activation suppresses LPC-to-hepatocyte
differentiation via the FXR–PTEN–PI3K–AKT–mTORC1
axis.103 Conversely, another group reported using a similar
ablation model that FXR is required for LPC-to-hepatocyte
differentiation by regulating ERK1,107 suggesting that FXR
can play a dual role in this process. Regarding the last step of
the conversion process, hepatocyte proliferation, and matu-
ration, it was reported that BET and Wnt2bb regulate the
hepatocyte proliferation97,98 and that Stat3 regulates its
maturation.102

In addition to the hepatocyte ablation model, an onco-
gene-induced hepatocyte damage model has been used to
study BEC-to-hepatocyte conversion, particularly LPC-to-he-
patocyte differentiation. In Tg(fabp10a:pt-β-catenin) fish,
hepatocyte-specific overexpression of the stable form of β-
catenin triggers oncogene-induced senescence and apopto-
sis in hepatocytes, thereby inducing BEC-driven liver
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regeneration.108 Indeed, in this model, both BECs and sur-
vived hepatocytes dedifferentiate into LPCs, and later, the
LPCs differentiate into hepatocytes. Using this model, it was
revealed that suppressing EGFR signaling promotes LPC-to-

hepatocyte differentiation via the EGFR–ERK–SOX9 axis.108

Importantly, this study suggests EGFR inhibitors as a poten-
tial regenerative therapeutic drug to promote LPC-to-hepa-
tocyte differentiation in diseased livers.

Table 1 Summary of mouse experiments showing liver parenchymal cell plasticity

Cre lines used
for lineage
tracing

Injury Genetic modulation Contribution (�) and limitations (•)

BEC-to-HC Foxl1-Cre BDL,66 DDC,61,63,66 CDE61 – � � 29% of HCs derived from
Foxl1-Creþ cells after CDE diet61

(5% of HCs were labeled during CDE
injury61)

• Noninducible Cre line

Hnf1b-CreER CDE140 – � 0.22% of HCs derived from BECs
• Rare contribution of BECs to HCs

Sox9-CreERT2 CCl4,
141 BDL,141

MCDE,141 DDC,65,141

APAP141

– � 1% of HCs derived from BECs65

• Sox9 is also expressed in a subset of
periportal hepatocytes in a normal
condition60,142

OPN-CreERT2 CDE,62 CCl4,
59 MCD76 – � 2.45% of HCs derived from BECs62

� � 13% of HCs derived from BECs59

• OPN is also expressed in other cell
types143–145

CK19-CreERT DDC,30,68 MCD,68

TAA,30,68 CDE69
Dβ1-integrin68

p21 overexpression68

Ctnnb1-siRNA69

� 9.1–10% of HCs derived from BECs30

� � 6.12% of HCs derived from
BECs68,69

• Low labeling efficiency143,146

HC-to-BEC AAV8-TBG-Cre
or AAV8-CMV-Cre

No injury R26-LSL-NICD1113 � 23% of BECs derived from HCs
assessed by KRT19 and BEC apical
markers (PAR6, PKCζ, and Ac-tub)

DDC,113 BDL113 – � 4.4–14.3% of BECs derived from
HCs assessed by KRT19 and BEC
apical markers (PAR6, PKCζ, and
Ac-tub)

Alb-Cre Retrorsineþ PHxþ
DDC or CCl4

112
– • Transplanted HCs converted to

BECs assessed by KRT19

Mx1-Cre (induced
by poly(I:C))

DDC,112 DAPM,112

BDL,112 TAA,112 CCl4
112

– � 1.9–20.6% of BECs derived from
HCs assessed by KRT19

Alb-CreER
or Alb-CreERT2

DDC,60 BDL,60 TAA147 – � 10–11.31% of BECs derived from
HCs assessed by KRT19 60

DDC,114 CCl4
114 – –

DDC114 R26R-LSL-NICD1
Hes1f/f

BEC differentiation is assessed by
KRT19 , EpCAM, and keratin

AAV-TBG-Cre;
R26-LSL-rtTA

No injury TetO-YAPS127A126

TetO-YAPS127A;
Rbpjfl/f126

BEC differentiation is assessed by
KRT19 and pan-CK

AAV8-TTR-Flp Alb-Cre; Rbpjf/f; Hnf6f/f127 – � � 100% of BECs derived from
HCs assessed by KRT19 and
wide-spectrum CK

Hnf4a-DreERT2;
Sox9-CreERT2

DDC,60 BDL60 – � � 3.63% of BECs derived from HCs
assessed by KRT19

– No injury HDTVI of
CAGGS-GFP-IRES-SOX9148

� � 18% of BECs derived from HCs
assessed by KRT19

Abbreviations: HC, hepatocyte; DDC, 3,5-diethoxycarbonyl-1,4-dihydrocollidine; CDE, choline-deficient, ethionine-supplemented; CCl4, carbon
tetrachloride; PHx, 70% partial hepatectomy; MCD, methionine- and choline-deficient; MCDE, methionine- and choline-deficient, 0.15% ethionine-
supplemented; APAP, acetaminophen; BDL, bile duct ligation; DAPM, methylene dianiline; TAA, thioacetamide; LSL, loxP-Stop-loxP cassette; HDTVI,
hydrodynamic tail vein injection; Ac-tub, acetylated tubulin.
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Hepatocyte-to-BEC Conversion in Animal
Models

Rodents
Hepatocyte-to-BEC conversion was first examined in
rats109,110 followed by mice. Rats subjected to bile duct
ligation (BDL) with pretreatment with the biliary toxin
4,4′-methylenedianiline (MDA) exhibited hepatocyte-to-
BEC conversion.109 In thismodel, BDL induces biliary damage
and subsequent regeneration and MDA blocks BEC prolifera-
tion, which is in symmetry with the rat Solt-Farber model, in
which PHx induces liver regeneration and 2-AAF blocks
hepatocyte proliferation. In addition to the BDL-MDA com-
bination, repeated administrations of MDA alone induced
chronic biliary damage and hepatocyte-to-BEC conver-
sion.111 In these rat models, hepatocyte-derived BECs were
identified based on dipeptidyl dipeptidase IV (DDPIV) ex-
pression using DDPIV-negative rats having hepatocytes from
DDPIV-positive donors.

Using the Cre/loxP system for hepatocyte-lineage tracing,
hepatocyte-to-BEC conversion was validated in mice with
multiple liver injury models, including DDC, CCl4, MDA, and
BDL112–114 (►Table 1). Compared with BEC-lineage tracing,
hepatocyte-lineage tracing ismuchmore robust and unques-
tionable owing to the availability and tracing efficiency of
hepatocyte-specific Cre lines that are not activated in any
other cell types. Given the essential role of Notch signaling in
biliary formation during development,115–117 it has been
reported that in mice, Notch signaling controls hepatocyte-
to-BEC conversion.113,114,118,119 Hepatocyte-specific dele-
tion of Rbpj (the principal mediator of Notch signaling)113

or Hes1 (a key effector of Notch signaling)114 reduced the
number of hepatocyte-derived BECs in mice fed a DDC diet,
while hepatocyte-specific overexpression of Notch intracel-
lular domain (NICD) induced hepatocyte-to-BEC conver-
sion.113,118,119 In addition to Notch signaling, Yap signaling
plays a crucial role in both biliary development117,120,121 and
hepatocyte-to-BEC conversion.122–126 Hepatocyte-specific
deletion of Yap1 greatly reduced the number of DRs,122,123

while hepatocyte-specific overexpression of constitutive-
active YAP1 induced hepatocyte-to-BEC conversion124–126

through the induction of NOTCH2 and SOX9.126

Contrary to the prevailing thought that Notch signaling is
indispensable for hepatocyte-to-BEC conversion, a Notch-
independent mechanism for the conversion was recently
identified.147 In a mouse model that mimics Alagille syn-
drome, Alb-Cre; Rbpjf/f; Hnf6f/f, intrahepatic peripheral bile
ducts do not develop initially, but later, the bile ducts form
via hepatocyte-to-BEC conversion. Additional deletion of
Tgfbr2 blocked the bile duct recovery, whereas hepatocyte-
specific overexpression of constitutive-active TGFBR1 pro-
moted it, indicating the crucial role of TGFβ signaling in
hepatocyte-to-BEC conversion in the absence of Notch
signaling.147

Cholangiocarcinomamodels inwhich hepatocyte-specific
overexpression of certain oncogenes induces cholangiocar-
cinoma are also useful to study themolecular mechanisms of
hepatocyte-to-BEC conversion, because the conversion is a

prerequisite for the cancer formation. Using these models, it
has been reported that not only Notch119,128–130 and
Yap118,124 but also Dnmt1118 play key roles in hepatocyte-
to-BEC conversion. Particularly, NICD overexpression in hep-
atocytes induces the conversion through the NICD–YAP1–
DNMT1 axis.118

Zebrafish
Several biliary injury models with genetic modifications
causing BEC paucity were developed in zebrafish; however,
hepatocyte-to-BEC conversion has not been investigated in
these models.81,131 Given that severe liver injury is required
for plasticity-mediated liver regeneration, severe biliary
injury models may be needed to study hepatocyte-to-BEC
conversion in zebrafish.We have recently developed a zebra-
fish model for the conversion, in which all regenerating BECs
originate from hepatocytes.132 Temporal Notch inhibition
during BEC-driven liver regeneration triggered by hepato-
cyte ablation generates zebrafish that completely lack BECs
in the liver. Subsequent removal of Notch inhibition permits
a subset of hepatocytes to give rise to BECs. In this new
zebrafish model, both Notch and Yap signaling control hepa-
tocyte-to-BEC conversion,132 consistent with the findings in
mice.114,121,126 Given the strengths of zebrafish as a verte-
brate model organism, particularly chemical screening, we
expect that our novelmodel aswell as other zebrafishmodels
to be developed will significantly contribute to a better
understanding of the molecular mechanisms underlying
hepatocyte-to-BEC conversion.

Regulating Hepatobiliary Plasticity as a
Therapeutic Intervention

Orthotopic liver transplantation is a main curative approach
for end-stage liver diseases. However, the shortage of organ
donors results in many patients dying while waiting for
transplantation. For such patients, there is a need for discov-
ery of alternative therapies that could act as a bridge to
support them until availability of liver donors. The develop-
ment of effective cell replacement therapy could provide
such a bridge and represent a promising approach to the
treatment of liver diseases. Another alternative to liver
transplant is leveraging the innate liver repair by harnessing
mechanisms of cell plasticity.

Studies using zebrafish models of hepatocyte ablation
have demonstrated key pathways that can be manipulated
to promote LPC-to-hepatocyte differentiation (►Fig. 2).
Sox9b repression is important for this process106; hence,
use of Notch inhibitor LY411575 that represses Sox9b dem-
onstrated the enhanced induction of Hnf4a in LPCs.133

Furthermore, pharmacological inhibition of EGFR or
MEK/ERK promoted LPC-to-hepatocyte differentiation, dem-
onstrating the prospects of the epidermal growth factor
receptor (EGFR) signaling pathway as a candidate therapeu-
tic target.108 Manipulation of the BEC niche is shown to
facilitate BEC-to-hepatocyte differentiation during chronic
injury in mice.62 Inhibition of laminin deposition using
Iloprost, a synthetic analog of prostaglandin I2 known to
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block TGFb1-mediated fibrogenesis, enhanced the presence
of differentiated hepatocytes after 3 weeks of CDE-induced
liver injury in mice. However, the low efficiency of the
process still posed a question about its clinical significance.
We have recently demonstrated that VEGFA significantly
enhanced BEC-to-hepatocyte conversion with a factor 5 to
produce healthy hepatocytes in acute as well as chronically
injured livers (unpublished data, Rizvi and Gouon-Evans, in
preparation). Importantly, the results provide evidence of
the therapeutic potential of VEGFA to harness BEC-driven
liver regeneration with the use of nucleoside-modified
mRNA-LNP, a tool that we have validated to express regen-
erative factors for preclinical therapeutic interventions in
various murine liver diseases.78,134 Some studies have also
explored pathway modulation to promote BEC differentia-
tion to benefit biliary diseases. YAP activation in hepatocytes
is required for hepatocyte-to-BEC conversion after DDC-
induced liver injury.135 YAP-mediated hepatocyte transdif-
ferentiation was further confirmed in mouse models of
alcohol exposure.136

Limitations and Concluding Remarks
The findings from the juxtaposition of both rodent and
zebrafish liver injury models have indisputably revealed
the ability of hepatocytes and BECs to generate each other
when needed, a fact that is not that surprising as hepatocytes
and BECs come from a common fetal progenitor, the hep-
atoblast. Even though this review largely focuses on the
contribution of facultative LPCs to liver regeneration, the
role of resident LPCs in this process is very likely. A critical
limitation of the current lineage tracing models is that they
do not discriminate between LPCs and BECs. Indeed, we are
yet to discover markers specific to LPCs that are not
expressed in BECs. Furthermore, with respect to cell plastic-

ity in rodents, it is not clear whether the dedifferentiation of
mature cells into facultative LPCs always precedes their
conversion to different cell fates. Additional lineage tracing
studies using yet-to-be discovered unique markers for LPCs,
in combination with isolated LPC fate mapping investigation
in ex vivo clonal cultures or following transplantation in vivo,
will be instrumental to further reveal the true potential of
LPCs in regenerating a damaged liver.

Interestingly, although animal studies indicate that LPC-
driven liver regeneration restores liver parenchyma in liver
diseases, it does not appear to benefit patientswith advanced
liver disease. In fact, the clinical benefits of LPCs may be
questionable as the presence of DRs has been associatedwith
poor prognosis in advanced human chronic liver dis-
eases.21,32 However, a correlation between LPC numbers
and disease severity in patients with chronic liver diseases
may also imply that while LPCs are activated, their differen-
tiation into hepatocytes may be ineffective. Indeed, persis-
tent LPCs release profibrogenic factors that may induce
inflammation and subsequent fibrosis, and instead aggravate
the chronic liver disease.137,138 Yet, a recent study demon-
strated a positive clinical outcome from BEC-derived hep-
atocytes in resolving human cirrhosis,33 indicating that
aberrant glutamine synthetase positivity in portal hepato-
cytes is significantly associated with regressed cirrhosis in
humans.Moreover, in cases of severe intoxicationwith drugs
such as acetaminophen, BEC-to-hepatocyte conversion is
observed and associated with decreased DRs in patients.139

However, this study concluded that the expansion and
differentiation of BECs into hepatocyte-like cells take longer
than required to prevent urgent liver transplantation. Hence,
to become a viable and effective treatment, particularly for
acute liver injuries, the cell conversion must be accelerated.
Stimulating the cell plasticity is an attractive therapeutic

Fig. 2 Molecular mechanisms driving hepatobiliary plasticity. Studies in rodents and zebrafish together with observations in human
specimens have revealed positive and negative molecular regulators implicated in BEC-to-hepatocytes conversion following hepatocyte injury
(A) and in hepatocyte-to-BEC conversion following BEC injury (B). Factors written with capital and small letters are related to mouse and zebrafish
studies, respectively. Factors with an asterisk (�) are related to both mouse and zebrafish studies. BEC, biliary epithelial cell.
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option for patients with advanced liver disease. The ability to
reliably identify a true progenitor population and to, thus,
define druggable pathways that would accelerate their plas-
ticity and differentiation into functional hepatocytes would
immensely facilitate the therapeutic potential of BECswithin
the naturally occurring DRs in the vast majority of human
liver diseases.
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